MATHEMATICS

1. If one root of the equation $4x^2 - 2x + (\lambda - 4) = 0$ be the reciprocal of the other,

then $\lambda = _{a)8}$ b) -8 c)4 d)-4

2. If the expression $px^3 + x^2 - 2x - q$ is divisible by x - 1 and x + 1, then the values of p and q are respectively.

(a) 2,-1 (b) -2,1 (c) -2,-1 (d) 2,1

3. If the difference in the roots of the equation $x^2 - px + q = 0$ is unity, then which one of them is correct?

(a) $p^2 + 4q = 1$ (b) $p^2 - 4q = 1$ (c) $p^2 + 4q = -1$ (d) $p^2 - 4q = -1$

4. If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p+q terms will be

a) 0 b) p - q c) p+q d) -(p+q)

5. The sum of first n odd natural numbers is _____.

a)2n - 1 b) 2n + 1 c) n^2 d) $n^2 - 1$

6. What is the value of $sin^2 15^0 + sin^2 20^0 + sin^2 25^0 + \cdots + sin^2 75^0$.

(a) $5\frac{1}{2}$ (b) $6\frac{1}{2}$ (c) $7\frac{1}{2}$ (d) $8\frac{1}{2}$

7. If the ratio of corresponding sides of two similar triangles is 2:3, then the ratio of their corresponding altitude is:

(a) 3:2 (b) 16:81 (c) 4:9 (d) 2:3

8. If the radii of two concentric circles are 6cm and 10cm, then length of chord of the larger circle which is tangent to the other is:

(a) 8cm (b) 10cm (c) 12cm (d)16 cm

9. Determine the ratio in which the line 2x + 3y - 30 = 0 divides the join of A(3,4) and B(7,8).

(a) 2:3 (b)3:1

10. The sum of the squares of two numbers is 685 and the difference

(c) 3:2

numbers is 685 and the difference between the squares of the same two numbers is 37. Find the numbers.

(d) 1:3

(a)17,18 (b)18,19 (c)19,20 (d)21,21

11. Age of Gokul is twice that of Sita.

Before 5 years age of Gokul was 3
times that of Sita. What is the present age of Sita?

(a)10 Yrs (b) 12 Yrs (c)15 Yrs (d)20 Yrs

12. One side of a triangular plot of land is 3 times the altitude drawn to that side. If the cost of watering the field at Rs 96 per hector is Rs 3600 then what is the length of the side and the altitude drawn on it?

(a)1524m, 508m (b)1530m,510m (c)1500m,500m (d)1515m,505m

13. A piece of wire, when bent to form the greatest circle, its diameter becomes 28cm. If the same piece of wire is bent to form the greatest possible square, what will be its area in sq.cm.

(a)844 (b)484 (c)488 (d)884

14. The value of : $tan15^{\circ}.tan25^{\circ}.tan60^{\circ}.tan65^{\circ}.tan75^{\circ}$ is

(a) $\sqrt{3}$ (b)1 (c) $\frac{\sqrt{3}}{2}$ (d) $\frac{1}{\sqrt{3}}$

15. If 3 chairs and 1 table cost Rs800 and 5 chairs and 3 tables cost Rs 2000 then the cost of 4 chairs and 1 table is

(a)Rs 900 (b)Rs 850 (c)Rs 800 (d)Rs1000

16. If $a^x = b$, $b^y = c$ and $c^z = a$, then the value of $x^2y^2z^2$ is ...

(a) $a^2b^2c^2$ (b) 1 (c) 4 (d) $\frac{1}{a^2b^2c^2}$

17. If the roots of the equation $\alpha x^2 + \beta x + \gamma = 0$ are 1 and 2, then one of the roots of the equation $\beta x^2 + \alpha x + \gamma = 0$ is

(a)1 (b)0 (c)-2 (d)2

18.	If the radius of	a cylinder is decreased
	by 50% and he	ight increased by 50% to
	form a new cyl	inder, then the volume
	will be decrease	ed by :
	(a)50%	(b)55%
	(c)62.5%	(d)63%
19.	If the volume a	nd surface area of a
	sphere are num	erically the same, then
	its radius is:	
	(a)4 (b)3	(c)2 $(d)1$
20	If the line segm	ent joining (2.3) and

(-1,2) is divided internally in the ratio 3:4 by the line x+2y=k, then the value

of 'k' is

(a) $\frac{41}{7}$ (b) $\frac{36}{7}$ (c) $\frac{31}{7}$

21. If the points (1,1),(-1,-1) and $(-\sqrt{3}, k)$ are the vertices of an equilateral triangle then the value of 'k' is

(a)1

 $(b)\sqrt{3}$

(c)-1

 $(d) - \sqrt{2}$

22. What is the solution of

(a) x=5

 $3.5^{2x-1} - 2.5^{x-1} = 0.2$? (b)x=1

(c)x=-1

(d) x=0

23. If a + b = 3, ab = 2 and a > b, then

what is the value of $2^{a^3-b^3}$?

(a)32

(b) 64

(c)128

(d)256

24. If $f(x) = \cos x + \sin x$, then what is the maximum value of f(x)?

(a)1

 $(b)\sqrt{2}$

 $(c)\sqrt{3}$

(d)2

25. The ratio of the height of a pillar and its shadow cast on the ground during a day is 1: $\sqrt{3}$. What is the elevation of the sun at that time?

 $(a)15^0$

 $(b)30^{0}$

(c) 45^0

 $(d)60^{0}$

26. If A(-1,1) and B(3,-1) are the end points of one side AB of square ABCD ,then how many units will be the length of one of its diagonals?

(a)10

(b) $\sqrt{10}$

(c) 40

(d) $\sqrt{40}$

27. If the product of five consecutive integers is equal to one of them, then which greatest possible integer is likely to be contained in them?

(a)1

(b)4

(c)6

(d)10

28. How many integers occur between 10 and 200 which are divisible by 7.

(a) 27

(b)25 (c)23

29. What should be subtracted from each one of 21,38,55 and 106 so that the results of subtraction will be proportional?

(a)4

 $(b)4^{\frac{1}{2}}$

(c) 6

(d) 6^{1}_{2}

30. The arithmetic mean and mode of a data are 24 and 12 respectively, then its median is

a) 25

b) 18 c) 20

d) 22

31. Mean of a certain number of observations is \bar{x} . If each observations is divided by m (m≠0) and increased by n, then the mean of new observation is

a) $\frac{\bar{x}}{m} + n$ b) $\frac{\bar{x}}{n} + m$

c) $\bar{x} + \frac{n}{n}$ d) $\bar{x} + \frac{m}{n}$

32. $2(\sin^6\theta + \cos^6\theta) - 3(\sin^4\theta + \cos^4\theta)$ in equal to

a) 0

b) 1

c) -1

d) None of these

33. If $a\cos\theta - b\sin\theta = c$, then $a\sin\theta + b\cos\theta =$ _____.

a) $\pm \sqrt{a^2 + b^2 + c^2}$

b) $\pm \sqrt{a^2 + b^2 - c^2}$

c) $+\sqrt{c^2-a^2-b^2}$

d) None of these.

34. Two poles are 'a' metres apart and the height of one is double of the other .If from the middle point of the line joining their feet an observer finds the angular elevations of their tops to be complimentary, then the height of the smaller pole is

a)	$\sqrt{2}$ a metre
c)	$\frac{a}{\sqrt{2}}$ metres

- b) $\frac{a}{2\sqrt{2}}$ metres d) 2a metres
- 35. In the formula $\bar{x} = a + h(\frac{1}{N}\sum f_i u_i)$, for finding the mean of grouped frequency distribution then $u_i = \underline{\hspace{1cm}}$.
- b) $h(x_i a)$ d) $\frac{a x_i}{h}$

- 36. If 3 coins are tossed simultaneously, then the probability of getting at least two heads is ____ .

 - a) $\frac{1}{4}$ b) $\frac{3}{8}$ c) $\frac{1}{2}$ d) $\frac{3}{4}$
- 37. A number is selected from first 50 natural numbers. The probability that it is a multiple of 3 or 5 is _____.
 a) $\frac{13}{25}$ b) $\frac{21}{50}$ c) $\frac{12}{25}$ d) $\frac{23}{50}$

- 38. A number 'x' is chosen at random from the numbers -3, -2, -1, 0, 1, 2, 3. The probability that |x| < 2 is ______. a) $\frac{5}{7}$ b) $\frac{2}{7}$ c) $\frac{3}{7}$ d) $\frac{1}{7}$

- 39. If $am \neq bl$, then the system of equations ax + by = c and lx + my = n
 - a)has a unique solution
 - b) has no solution
 - c) has infinitely many solution
 - d) may or may not have a solution
- 40. If x = a, y = b is the solution of the systems of equations x - y = 2 and x + y =4, then the values of a and b are respectively
 - a) 3 & 1
- b) 3 & 5
- c) 5 & 3
- d) -1 & -3

GENERAL SCIENCE

- 41. Commercial electric motors do not use
 - (a) an electromagnet to rotate the armature
 - (b) effectively large number of turns of conducting wire in the current carrying coil
 - (c) a permanent magnet to rotate the armature

- (d) a soft iron core on which the coil is
- 42. A positively charged particle projected towards west is deflected towards north by a magnetic field then the direction of magnetic field is:
 - (a) Towards South
 - (b) Torwards East
 - (c) Downward
 - (d) Upward
- 43. Phenomenon of electromagnetic induction
 - (a) Process of charging a body
 - (b) Process of generating magnetic field due to a current passing through a coil
 - (c) Producing induced current in a coil due to relative motion between a magnet and the coil
 - (d) Process of rotating a coil of an electric motor
- 44. A ray of light travels from rarer to a dense medium. Which of the quantities does not change?
 - (a) Speed
- (b) Wavelength
- (c) Frequency (d) Amplitude
- 45. When 10¹⁹ electrons are removed from a neutral metal plate the electric charge on it
 - (a) -1.6 C
 (c) 10⁺¹⁹ C
- (b)+1.6C
- $(d)10^{-19}C$
- 46. The amount of charge flowing in 2 min in a wire of resistance 10Ω when a potential difference of 20 V is applied between its ends is
 - (a)120 C
- (b)240C
- (c)20 C
- (d)4 C
- 47. The laws of reflection hold good for
 - (a) plane mirror only
 - (b) concave mirror only
 - (c) convex mirror only
 - (d) all mirrors irrespective of their shape
 - 48. A child is standing in front of a magic mirror. She finds the image of her head bigger, the middle portion of her body of the same size and that of the

- legs smaller. The following is the order of combinations for the magic mirror from the top.
- (a) Plane, convex and concave
- (b) Convex, concave and plane
- (c) Concave, plane and convex
- (d) Convex, plane and concave
- 49. An object is placed 40cm from a concave mirror of focal length 20cm. The image formed is
 - (a) real, inverted and same in size
 - (b) real, inverted and smaller in size
 - (c) Virtual, erect and larger in size
 - (d) virtual, erect and smaller in size
- 50. The absolute refractive index of a medium is 1.5. Then what would be the velocity of light in this medium?
 - (a) 2×10^8 m/s (b) 1.5×10^8 m/s
 - (c) $3.5 \times 10^8 \text{ m/s}$ (d) $2.5 \times 10^8 \text{ m/s}$
- 51. Two lenses of power +4 and -6 dioptres are placed in contact with each other. The focal length of the combination will be:
 - (a) 0.5 meter (b) -0.1 meter
 - (c) -0.5 meter (d) 0.1 meter
- 52. Two electric bulbs with ratings (100 W,250V) and (50 W, 250V) are connected in series across a 250 V source .Calculate the output power ,
 - (a) 150 W
- (b) 33.33 W
- (c) 50 W
- (d) 250 W
- 53. A long straight wire carries 5A current. Find the magnetic field induction produced at a radial distance of 5 cm from its axis $(\mu_0 = 4\pi \times 10^{-7})$ N/A^2)
 - (a) 0.1×10^{-4} Tesla
 - (b) 0.3 x 10⁻⁵ Tesla
 - (c) 0.2×10^{-4} Tesla
 - (d) 0.5×10^{-4} Tesla
- 54. In the electrolysis of molten PbCl₂ (a)Pb is deposited at cathode and oxygen gas liberated at anode (b)Hydrogen is liberated at cathode and oxygen gas liberated at anode. (c)Pb is deposited at cathode and chlorine gas liberated at anode (d)Pb is deposited at cathode and hydrogen gas liberated at anode

- 55. Choose the correct option: (a)CuSO₄ solution can be stored in a
 - Zn container.
 - (b)AgNO₃ solution can be stored in a Cu container.
 - (c)CuSO₄ solution can be stored in a Fe container.
 - (d)ZnSO₄ solution can be stored in a Cu container.
- 56. Which one of the following will turn red litmus blue
 - a) Vinegar
 - Baking soda solution b)
 - c) Lemon juice
 - d) soft drinks
- 57. Oxidation number of F in OF₂ is
 - (a)-2
- (b)+2(d)+1
- (c)-1
- 58. The alloy containing a non -metal is:
 - a)Brass
- b)Bronze
- c)Steel
- d)White metal
- 59. Which of the following is an acid?
 - a)NaOH
- $b)NH_4NO_3$
- $c)Mg(OH)_2$
- $d)B(OH)_3$
- 60. Which one of the following is functional group of acetone?
 - a)Carboxylic acid b)Aldehyde d)Alcohol
 - c)Ketone
- 61. Which of the following has the formula KO2?
 - a)Potassium suboxide
 - b)Potassium peroxide
 - c)Potassium superoxide
 - d)Kalium oxide
- 62. In order to prepare hard water from pure water which of the following salt may be added?
 - a) $CaCl_2$
- b) $MgCl_2$
- c)) $MgSO_{A}$
- d) All of these
- 63. Among the following which one is free from unsaturation?
 - a)hexane
- b)hexane
- c)hexyne
- d)benzene

- 64. The adsorption of hydrogen by platinum is known as:
 - b)Hydrogenation a)Reduction c)Occlusion d)Dehydrogenation
- 65. Which of the following substance sublimes on heating?
 - a)Sodium Chloride
 - b)Washing Soda
 - c)Ammonium Chloride
 - d)Caustic Potash
- 66. Which of the following is used to make parachute rope?
 - a)Polyester

b)Nylon

c)Rayon

d)Acrylic

- 67. The chief function of a gene is
 - a) To determine the character of a cell.
 - b) To regulate cellular respiration.
 - c) To assist in carbon assimilation
 - d) To synthesize proteins.
 - 68. A typical genotypic monohybrid ratio
 - a) 9:3:3:1

b)3:1

c)1:2:1

d)9:7

- 69. A triploid structure (3n) is the
 - a) Zygote
 - b) Pollen tube
 - c) Megaspore
 - d) Endosperm
- 70. Photosynthesis and respiration are
 - a) Complementary processes
 - b) Reverse processes
 - c) Identical processes
 - d) Opposite processes
- 71. Ecology is the study of
 - a) The physical structure of organisms.
 - b) The inter relationships of organisms and their surroundings.
 - c) The inheritance of characteristics among organisms.
 - d) The naming and classification of organisms.
- 72. Which of the following organ secretes a hormone when the blood sugar rises? a)Liver b)Pancreas

- c)salivary gland d)gastric gland
- 73. Which of the following organism has 4 chamberedheart?
 - a)Fish

b) Frog

- c)Crocodiles
- d)Snakes 74. In which organism cell division is the
 - a)Plasmodium b)Hydra

mode of reproduction?

c)herbaceous plant

d)penicillium

- 75. Which method of the following is a natural mode of contraception?
 - a)Barrier method
 - b)Surgical method
 - c)Withdrawl method
 - d)hormonalmethod
- 76. The cross used to ascertain whether the plant is homozygous or heterozygous is
 - a) linkage cross
 - b) reciprocal cross
 - c) back cross
 - d) monohybrid cross.
- 77. Seeds are called products of sexual reproduction because they
 - a) Give rise to new plants.
 - b) Are formed by fusion of gametes.
 - c) Are formed by fusion of pollen tubes.
 - d) Can survive for longer periods.
- 78. The flexibility in leaves is due to a tissue called
 - a) chlorenchyma
- b) parenchyma
- c)sclerenchyma
- d) collenchymas
- 79. Genes regulate the expression of trait by making specific
 - a)Protein

b)Polysaccharide

c)Lipids

d)Nucleic acids

- 80. Salivation is controlled by one of the following part of brain:
 - a)Cerebral hemisphere
 - b) Medulla Oblongata
 - c) Cerebellum
 - d) Pons region

MENTAL ABILITY TEST

81 Elated is to despondent as enlightened is to

> a. aware b.ignorant

c.miserable d.tolerant

82. Reptile is to lizard as flower is to a) petal b) stem c)daisy d) alligator

83. Which word does NOT belong with the others?

b)island a)peninsula c)bay. d)cape

84. In a class of 90 ,where girls are twice that of boys ,Shridar ranked fourteenth from the top ,if there are 10 girls ahead of Shridar ,how many boys are after him in rank?

a)23 b)26

c)25d)22**85.** Raji is 5 ranks ahead of Raj in a class of 46 students. If Raj's rank is twelveth from the last, what is Raji's rank from the start?

a)29 b)31 c)28d)30

86. Complete analogous pair:

Influenza: Virus:: Typhoid:?

b)Parasite a)Bacillus c)Protozoa d)Bacteria

87. Complete analogous pair:

Paw: Cat:: Hoof:? a)Horse b)Lion c)Lamb d)Elephant

88. P, Q, R, S, T, U are having different toffees. P have more toffees than only S and T both but less than Q. R has more toffees than U but less than Q. Who among them have least number of toffees?

(a) R (b) S (c) T (d) Either (b) or (c)

89. Among P, Q, R, S, T and U; R is shorter than only P and U. S is shorter than T and Q. If each of them is of different heights, who among them will be the shortest?

(a) U (b) P (c) S (d) R

90. Adarsh is eleventh from the left end and Naveen is 20th from the right end in a row. If they interchange their positions, Adarsh becomes fifteenth from the left end. How many persons are there in the row?

(a) 36 (b) 35 (c) 33 (d) 34

91. A is 25th from the right end and B is 25th from the left end of a row. If they interchange their position then A becomes 25th from the left end. How many persons are sitting in the row?

(a) 51 (b) 50 (c) 49 (d) CND 92. Ram is 11th to the left of Shyam, who is 15th from the left end and Harsh is 20th from the right end of a row, then what is the position of Ram from the right end of the row? (c) 49 (a) 51 (b) 50 (d) CND **Directions** (93-95): Study the following information carefully and answer the given

questions. Amongst five friends, A, B, C, D, E, each got

different marks in the examination. A scored more than B but less than C. C scored 65 marks. D scored less marks than only E. The one who scored the minimum marks scored 60 marks and the one who scored the highest. scored 80 marks.

93. Who scored the second highest marks?

(a) B b) E (c) D (d) C 94. Who is the most likely to have scored 62 marks?

(b) A (c) D (d) E (a) B 95. Who scored the lowest marks?

(a) B (b) E (c) D (d) none of these **Directions** (96-100): Choose the correct alternative in the following questions:

96. Giant: Dwarf: :Genius: ?

(a) Wicked (b) Gentle (c) Idiot (d) Tinv

97. Botany: Plants: : Entomology: ?

(b) Insects (a) Snakes (c) Birds (d) Germs

98. Menu: Food: :Catalogue: ?

(a)Rack (b) Newspaper

(d)Cotton (c) Library

99. Pulp: Paper: :Hemp: ?

(a)Basket (b) Yarn (c) Rope (d) Cotton

100. Mango: Fruit: :: Potato: ?

(a) Root (b) Fruit (c) Stem (d) Flower

APTITUDE TEST FOR ADMISSION INTO +2 SCIENCE (2021-22)

ID NO. _______
Time: 3 Hours
(9.30 am - 12.30 am)

Guidelines to the Candidates:

- 1. This Booklet contains printed 11 pages and 1 blank page for rough work. Any defect found should be brought to the notice of the invigilator immediately.
- 2. Fill in the particulars in the OMR Sheet given to you separately as per the directions given therein.
- This test is of three hours duration.
- 4. There are four choices in every question as (a), (b), (c) and (d). Only one is correct. Each question carries 4 marks.
- 5. (i) The test consists of 100 multiple choice questions comprising Mathematics (40), Physics (13), Chemistry (13), Biology (14) and mental ability(20) carrying maximum of 400 marks.
 - (ii) -1 will be awarded for each wrong answer/multiple answer.
 - (iii) No mark will be awarded for any overwriting/scratching answer.
- 6. Each candidate must show his/her Admit Card to the invigilator whenever required.
- 7. No candidate shall leave his/her seat during examination.
- 8. Do not tear/remove any page of the Booklet.
- Calculation, if any, may be done at the blank pages of this booklet provided at the end for rough work. No calculator is allowed.
- 10. After finishing the test, the booklet with the OMR sheet is to be handed over to the invigilator before leaving the room.

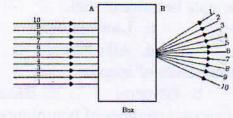
FASCIMILE STAMP	PVL		
	Edial		

MATHEMATICS

1.	A village has a circular wall around it, and the wall has four gates pointing north, south, east and west. A tree stands outside the village ,16 m north of north gate, and it can be just seen appearing on the horizon from a point 48 m east of the south gate .The diameter (in meters)of the wall that surrounds the village is a) 24
	b) 44
	c) 48
P	d) 22
21.	Suppose a,b are integers and a+b is a root of $x^2 + ax + b = 0$. The maximum possible
20	
1	value of b^2 is
	a) 81
	b) 111
	c) 123
	d) 41
3.	In a triangle ABC, right angled at A, the altitude through A and the internal bisector of
	angle A have lengths 3 and 4 respectively. The length of median through A is
4	a) 22
1	b) 21
	c) 41
	d) 24
4.	From a square with sides of length 5, triangular pieces from the four corners are
	removed to form a regular octagon. The area removed to the nearest integer is
	a) 5
	b) 4
	c) 6
	d) 2
5.	Let the rational number p/q be closest to but not equal to 22/7 among all rational
	numbers with denominator less than 100. The value of $p-3q$ is
	a) 12
	b) 14
	c) 22
	d) 21
6	If three points $(0,0)$, $(3,\sqrt{3})$ and $(3,p)$ form an equilateral triangle, then p=
0.	
7	(a) 2 (b) -4 (c) -3 (d) none of these If P(2,4) Q(0,2) P(3,6) and S(5,y) are vertices of a perallel agreem POPS, then value
1.	If P(2,4), Q(0,3), R(3,6) and S(5,y) are vertices of a parallelogram PQRS, then value
	of y is
	(a) 7 (b) 5 (c) -7 (d) -8

8. In Δ ABC, X	Y II BC, cuts	AB at X and	AC at Y. If I	BY bisects ∠XYC, then
(a) BC=CY	(b) BC=BY	(c) BC\neq CY	(d) B	C ≠BY
9. If $\cos\theta = \frac{2}{3}$, the	en 2sec²θ +	$2\tan^2\theta$ -7=		
(a) 1	(b)0	(c) 3	(d) 4	
$10.9sec^2A - 9ta$	$2n^2A =$	Element .		- 05 (1)
(a) 1	(b)8	(c)9	(d)0	
11.If perimeter of	a semi-circu	lar protractor	is 108cm, th	en its diameter is
(a) 36 cm	(b)24cm	(c)42cm	(d)48cm	
12. The area of inc	circle of an ed	quilateral tria	ngle of side 4	12cm is
(a) $22\sqrt{3}cm^2$	(b) 21	3 cm ² (c) 92	4 cm ² (d) 46	52 cm ²
1/3. If perimeter of	a circle is eq	ual to that of	a square, the	en ratio of their areas is
(a) 22:7	(b) 14:11	(c)7:2	2	(d)11:14
14. Volumes of tw	o spheres are	in the ratio	54:27. The ra	tio of their surface areas is
(a) 1:2	(b) 2:3	(c) 9:	16	(d) 16:9
15. The probability	y of throwing	g a number gr	eater than 2	with a fair dice is
$(a)^{\frac{3}{5}}$	(b) $\frac{2}{5}$	$(c)^{\frac{2}{3}}$	$(d)^{\frac{1}{2}}$	
16. What is the pro	9	3	3	ays?
$(a)^{\frac{5}{7}}$				Institute of Properties
$17.\text{If } \sin\theta + \cos\theta =$	$=\sqrt{2}$, then tan	$\theta + \cot \theta =$		
	(b) -1		(d) 2	
18. The point on 2	K-axis which	is equidistant	from the po	ints (-1,0) and (5,0) is
(a)(0,2)	(b)(2,0)	(c)(3,0)	(d)(0,3)	
19. The area of a t	riangle forme	ed by the line	$\frac{x}{a} + \frac{y}{b} = 1 \text{ w}$	ith the coordinate axes is
(a) ab	(b) 2ab	(c) $\frac{1}{2}$ a	b	$(d)\frac{1}{4}ab$
				then the difference of median
and mean is				
(a) 12	(b) 24	(c) 8		(d)36
21.The mean of	n observatio	ns is \bar{x} . If	the first ob	servation is increased by 1,
second by 2, tl	he third by 3	, and so on, t	hen the new	mean is
(a) \bar{x} + (2n+1)	(b) \bar{x} +	$\frac{n+1}{2}$ (c) \bar{x}	+ (n+1)	(d) \bar{x} - $\frac{n+1}{2}$
22. The sum of n their 18 th term		AP's are	in the ratio	5n+4:9n+6. Then, the ratio of
(a) $\frac{179}{321}$	$(b)\frac{178}{321}$	$(c)^{\frac{175}{321}}$		$(d)_{321}^{176}$
23.If two tangent	ts inclined a	t an angle o	of 60° , are	drawn to a circle of radius 3cm,
then length of		and the same of th		schools of green and A.T.
(a) $\frac{3\sqrt{3}}{2}$ cm	(b)6cm	(c)3cm	579	(d) 3√3cm

24. The perpendicular bisector of the line segment joining	the points $A(1,5)$ and
B(4,6) cuts the y-axis at	Ta de (a) - In de la l
(a) $(0,13)$ (b) $(0,-13)$ (c) $(0,12)$ (d) $(13,0)$	
25. If the three sides of a triangle are $a,\sqrt{3}a$ and $\sqrt{2}a$, then the	ne measure of the angle
opposite to the longest side is (a) 45^0 (b) 30^0 (c) 60^0 (d) 90^0	
26. The value of θ for $\cos^4 \theta - \sin^4 \theta = \frac{1}{2} (0 < \theta < 90^0)$ is	
(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{6}$	medicated and the same
27. The shadow of a tower standing on a level ground is x sun's altitude is 30°, while it is y metres long when the s	sun's altitude is 60°. If the
height of the tower is $45 \frac{\sqrt{3}}{2}$ m then the value of x - y is	
(a) 45m (b) $45\sqrt{3}$ m (c) $\frac{45}{\sqrt{3}}$ m (d) $45\frac{1}{\sqrt{3}}$	$\frac{\sqrt{3}}{2}$ m
28. The ratio in which the line segment joining the point	s A(-12,2) and B(8,3) is
divided by the y-axis is	
(a) 2:1 (b) 1:4 . (c) 1:3	d) 3:2
29. Pair of linear equations	
7x - 3y = 4	
$3x + \frac{k}{7}y = 4$ is consistent only when	
(a) $k=9$ (b) $k=-9$ (c) $k\neq -9$	(d) $k \neq 7$.
30. If α, β be the zeros of the quadratic polynomial 5:	$x+2x^2+1$, then value
30. If α, β be the zeros of the quadratic polynomial 5: of $\alpha + \beta + \alpha\beta$ is	
of $\alpha + \beta + \alpha\beta$ is (a) -2 (b)-1 (c)1	(d) none of these
of $\alpha + \beta + \alpha\beta$ is (a) -2 (b)-1 (c)1	(d) none of these
of $\alpha + \beta + \alpha\beta$ is	(d) none of these
of $\alpha + \beta + \alpha\beta$ is (a) -2 (b)-1 (c)1 31. The largest number which divides 70 and 125, leaving	(d) none of these remainders 5 and 8
of $\alpha + \beta + \alpha\beta$ is (a) -2 (b)-1 (c)1 31. The largest number which divides 70 and 125, leaving respectively is	(d) none of these remainders 5 and 8
of $\alpha + \beta + \alpha\beta$ is (a) -2 (b)-1 (c)1 31. The largest number which divides 70 and 125, leaving respectively is (a) 13 (b)65 (c)875 32. If $\sin\theta - \cos\theta = 0$, then the value of $\sin^4\theta + \cos^4\theta$ is	(d) none of these remainders 5 and 8 (d) 1750
of $\alpha + \beta + \alpha\beta$ is (a) -2 (b)-1 (c)1 31. The largest number which divides 70 and 125, leaving respectively is (a) 13 (b)65 (c)875 32. If $\sin\theta - \cos\theta = 0$, then the value of $\sin^4\theta + \cos^4\theta$ is (a) 1 (b) $\frac{1}{2}$ (c) $\frac{3}{4}$	(d) none of these remainders 5 and 8 (d) 1750 (d) $\frac{1}{4}$
of $\alpha + \beta + \alpha\beta$ is (a) -2 (b) -1 (c) 1 31. The largest number which divides 70 and 125, leaving respectively is (a) 13 (b) 65 (c) 875 32. If $\sin\theta - \cos\theta = 0$, then the value of $\sin^4\theta + \cos^4\theta$ is (a) 1 (b) $\frac{1}{2}$ (c) $\frac{3}{4}$ 33. The area of a circle is 220cm^2 . The area of a square insertions.	(d) none of these remainders 5 and 8 (d) 1750 (d) $\frac{1}{4}$ cribed in it is
of $\alpha + \beta + \alpha\beta$ is (a) -2 (b) -1 (c) 1 31. The largest number which divides 70 and 125, leaving respectively is (a) 13 (b) 65 (c) 875 32. If $\sin\theta - \cos\theta = 0$, then the value of $\sin^4\theta + \cos^4\theta$ is (a) 1 (b) $\frac{1}{2}$ (c) $\frac{3}{4}$ 33. The area of a circle is 220cm^2 . The area of a square inso (a) 49cm^2 (b) 70cm^2 (c) 140cm^2	(d) none of these remainders 5 and 8 (d) 1750 (d) $\frac{1}{4}$ cribed in it is (d) 150cm ²
of $\alpha + \beta + \alpha\beta$ is (a) -2 (b)-1 (c)1 31. The largest number which divides 70 and 125, leaving respectively is (a) 13 (b)65 (c)875 32. If $\sin\theta - \cos\theta = 0$, then the value of $\sin^4\theta + \cos^4\theta$ is (a) 1 (b) $\frac{1}{2}$ (c) $\frac{3}{4}$ 33. The area of a circle is 220cm^2 . The area of a square insequal (a) 49cm^2 (b) 70cm^2 (c) 140cm^2 34. The area of the largest triangle that can be inscribed in a square of α and α is α and α is α in	(d) none of these remainders 5 and 8 (d) 1750 (d) $\frac{1}{4}$ cribed in it is (d) 150cm ² a semi-circle of radius r is
of $\alpha + \beta + \alpha\beta$ is (a) -2 (b)-1 (c)1 31. The largest number which divides 70 and 125, leaving respectively is (a) 13 (b)65 (c)875 32. If $\sin\theta - \cos\theta = 0$, then the value of $\sin^4\theta + \cos^4\theta$ is (a) 1 (b) $\frac{1}{2}$ (c) $\frac{3}{4}$ 33. The area of a circle is 220cm^2 . The area of a square inset (a) 49cm^2 (b) 70cm^2 (c) 140cm^2 34. The area of the largest triangle that can be inscribed in a (a) $2r$ (b) r^2 (c) r	(d) none of these remainders 5 and 8 (d) 1750 (d) $\frac{1}{4}$ cribed in it is (d) 150cm ² a semi-circle of radius r is (d) \sqrt{r}
of $\alpha + \beta + \alpha\beta$ is (a) -2 (b)-1 (c)1 31. The largest number which divides 70 and 125, leaving respectively is (a) 13 (b)65 (c)875 32. If $\sin\theta - \cos\theta = 0$, then the value of $\sin^4\theta + \cos^4\theta$ is (a) 1 (b) $\frac{1}{2}$ (c) $\frac{3}{4}$ 33. The area of a circle is 220cm^2 . The area of a square insequal (a) 49cm^2 (b) 70cm^2 (c) 140cm^2 34. The area of the largest triangle that can be inscribed in a (a) $2r$ (b) r^2 (c) r 35. A kite with sides x cm, x cm, y cm, and y cm is inscribed	(d) none of these remainders 5 and 8 (d) 1750 (d) $\frac{1}{4}$ cribed in it is (d) 150cm ² a semi-circle of radius r is (d) \sqrt{r}
of $\alpha + \beta + \alpha\beta$ is (a) -2 (b)-1 (c)1 31. The largest number which divides 70 and 125, leaving respectively is (a) 13 (b)65 (c)875 32. If $\sin\theta - \cos\theta = 0$, then the value of $\sin^4\theta + \cos^4\theta$ is (a) 1 (b) $\frac{1}{2}$ (c) $\frac{3}{4}$ 33. The area of a circle is 220cm^2 . The area of a square inset (a) 49cm^2 (b) 70cm^2 (c) 140cm^2 34. The area of the largest triangle that can be inscribed in a (a) $2r$ (b) r^2 (c) r 35. A kite with sides x cm, x cm, y cm, and y cm is inscribed kite is	(d) none of these remainders 5 and 8 (d) 1750 (d) $\frac{1}{4}$ cribed in it is (d) 150cm ² a semi-circle of radius r is (d) \sqrt{r} d in a circle. The area of the
of $\alpha + \beta + \alpha\beta$ is (a) -2 (b)-1 (c)1 31. The largest number which divides 70 and 125, leaving respectively is (a) 13 (b)65 (c)875 32. If $\sin\theta - \cos\theta = 0$, then the value of $\sin^4 \theta + \cos^4 \theta$ is (a) 1 (b) $\frac{1}{2}$ (c) $\frac{3}{4}$ 33. The area of a circle is 220cm^2 . The area of a square inso (a) 49cm^2 (b) 70cm^2 (c) 140cm^2 34. The area of the largest triangle that can be inscribed in a (a) $2r$ (b) r^2 (c) r 35. A kite with sides x cm, x cm, y cm, and y cm is inscribe kite is (a) $xy \text{ cm}^2$ (b) $\frac{1}{2}xy \text{ cm}^2$ (c) $2xy \text{ cm}^2$	(d) none of these remainders 5 and 8 (d) 1750 (d) $\frac{1}{4}$ cribed in it is (d) 150cm ² a semi-circle of radius r is (d) \sqrt{r} d in a circle. The area of the (d) x^2y^2 cm ²
of $\alpha + \beta + \alpha\beta$ is (a) -2 (b) -1 (c) 1 31. The largest number which divides 70 and 125, leaving respectively is (a) 13 (b) 65 (c) 875 32. If $\sin\theta - \cos\theta = 0$, then the value of $\sin^4\theta + \cos^4\theta$ is (a) 1 (b) $\frac{1}{2}$ (c) $\frac{3}{4}$ 33. The area of a circle is 220cm^2 . The area of a square inset (a) 49cm^2 (b) 70cm^2 (c) 140cm^2 34. The area of the largest triangle that can be inscribed in a (a) $2r$ (b) r^2 (c) r^2 35. A kite with sides x cm, x cm, y cm, and y cm is inscribed kite is (a) $xy \text{ cm}^2$ (b) $\frac{1}{2}xy \text{ cm}^2$ (c) $2xy \text{ cm}^2$ 36. If the point (1,1) is equidistant from the points (a+b, b-a)	(d) none of these remainders 5 and 8 (d) 1750 (d) $\frac{1}{4}$ cribed in it is (d) 150cm ² a semi-circle of radius r is (d) \sqrt{r} d in a circle. The area of the (d) x^2y^2 cm ² and (a-b, a+b), then
of $\alpha + \beta + \alpha\beta$ is (a) -2 (b) -1 (c) 1 31. The largest number which divides 70 and 125, leaving respectively is (a) 13 (b) 65 (c) 875 32. If $\sin\theta - \cos\theta = 0$, then the value of $\sin^4\theta + \cos^4\theta$ is (a) 1 (b) $\frac{1}{2}$ (c) $\frac{3}{4}$ 33. The area of a circle is 220cm^2 . The area of a square inso (a) 49cm^2 (b) 70cm^2 (c) 140cm^2 34. The area of the largest triangle that can be inscribed in a (a) 2r (b) r^2 (c) r^2 35. A kite with sides x cm, x cm, y cm, and y cm is inscribe kite is (a) $xy \text{ cm}^2$ (b) $\frac{1}{2}xy \text{ cm}^2$ (c) $2xy \text{ cm}^2$ 36. If the point (1,1) is equidistant from the points (a+b, b-a) (a) $a+b=0$ (b) $a+b=1$ (c) $a=b$	(d) none of these remainders 5 and 8 (d) 1750 (d) $\frac{1}{4}$ cribed in it is (d) 150cm ² a semi-circle of radius r is (d) \sqrt{r} d in a circle. The area of the (d) x^2y^2 cm ² and (a-b, a+b), then (d) b-a=1
of $\alpha + \beta + \alpha\beta$ is (a) -2 (b) -1 (c) 1 31. The largest number which divides 70 and 125, leaving respectively is (a) 13 (b) 65 (c) 875 32. If $\sin\theta - \cos\theta = 0$, then the value of $\sin^4\theta + \cos^4\theta$ is (a) 1 (b) $\frac{1}{2}$ (c) $\frac{3}{4}$ 33. The area of a circle is 220cm^2 . The area of a square inso (a) 49cm^2 (b) 70cm^2 (c) 140cm^2 34. The area of the largest triangle that can be inscribed in a (a) 2r (b) r^2 (c) r 35. A kite with sides x cm, x cm, y cm, and y cm is inscribe kite is (a) $xy \text{ cm}^2$ (b) $\frac{1}{2}xy \text{ cm}^2$ (c) $2xy \text{ cm}^2$ 36. If the point (1,1) is equidistant from the points (a+b, b-a) (a) $a+b=0$ (b) $a+b=1$ (c) $a=b$ 37. A train is moving in a circular curve of radius 1500m at	(d) none of these remainders 5 and 8 (d) 1750 (d) $\frac{1}{4}$ cribed in it is (d) 150cm ² a semi-circle of radius r is (d) \sqrt{r} d in a circle. The area of the (d) x^2y^2 cm ² and (a-b, a+b), then (d) b-a=1
of $\alpha + \beta + \alpha\beta$ is (a) -2 (b) -1 (c) 1 31. The largest number which divides 70 and 125, leaving respectively is (a) 13 (b) 65 (c) 875 32. If $\sin\theta - \cos\theta = 0$, then the value of $\sin^4\theta + \cos^4\theta$ is (a) 1 (b) $\frac{1}{2}$ (c) $\frac{3}{4}$ 33. The area of a circle is 220cm^2 . The area of a square inso (a) 49cm^2 (b) 70cm^2 (c) 140cm^2 34. The area of the largest triangle that can be inscribed in a (a) 2r (b) r^2 (c) r^2 35. A kite with sides x cm, x cm, y cm, and y cm is inscribe kite is (a) $xy \text{ cm}^2$ (b) $\frac{1}{2}xy \text{ cm}^2$ (c) $2xy \text{ cm}^2$ 36. If the point (1,1) is equidistant from the points (a+b, b-a) (a) $a+b=0$ (b) $a+b=1$ (c) $a=b$	(d) none of these remainders 5 and 8 (d) 1750 (d) $\frac{1}{4}$ cribed in it is (d) 150cm ² a semi-circle of radius r is (d) \sqrt{r} d in a circle. The area of the (d) x^2y^2 cm ² and (a-b, a+b), then (d) b-a=1


38.In a	right triangle Al	BC, right angled	l at B , $BC = 12$	cm and AB= 5cm.	The radius of
the	circle inscribed	in the triangle	(in cm) is		
((a) 4 ((b)3	(c) 2	(d) 1	
39.A c	circle passes thro	ough the points	A(2,-9), $B(5,-8)$	3) and $C(2,1)$. The $C(2,1)$	centre of the
circ	le is				
((a) (2,-4)	(b) (-3,4)	(c) (3, -16/3	(d) none of the	ese
40.A c	ard is drawn fro	om a well shuffle	d pack of 52 c	ards. Find the proba	ibility that the
card	d drawn is 5 of h	neart or of diamo	nd.		
((a)1/26	(b)7/26	(c) 1/52	(d) 7/52	
1					
44		CENED	AT COL	PNOD	intinent as
7		GENER	AL SCII	ENCE	
41.Mei	ndel's second lay	w is the law of			
a.	Segregation				
	Dominance	*			
c.	Independent As	sortment			
	Polygenic inher				
42.If h	aemoglobin is re	placed by haemo	ocyanin, the blo	ood will carry	
a.	Less oxygen				
b.	More oxygen	70.74			
c.	No oxygen			hab borded has been	aladas Total
d.	Same amount o	foxygen	month elector		
43.The	intermediate ho	st of Trypanosor	na is		
a.	Sand fly				
b.	Fruit fly				milesoell and
Cl.	Mosquito				andre I
d.	Tsetse fly				
44.Wh	ich type of conn	ective tissue lack	s fibres?		
	Cartilage				
250	Bone				
	Areolar tissue				
	Blood		THE REW	or groupliming to a	
	individual havin	g two identical f	actors of a char	racter is called	
	Heterozygote				
	Homozygote				
	Hybrid				
	None of the abo				LENGTH IN
15	41 HOUSE 11 1972	ollowing sexually	transmitted d	isease is not caused	by bacteria?
	Syphilis			100	nerionité le
	Gonorrhoea				and the state of the state of
	Warts				melyonal ve
d.	Chlamydia				Markettle de

47. Which among the following cell organelle does not contain DNA?
a. Mitochondria
b. Lysosome
c. Chloroplast
d. Nucleus
48. Which among the following has specialised tissue for conduction of water?
a. Thallophyta
b. Bryophyta
c. Pteridophyta
d. Gymnosperms
a. (i) and (ii) b. (ii) and (iii) c. (iii) and (iv) d. (i) and (iv)
49. Plant trap % of energy provided by the sun.
a. 10%
b. 2%
c. 50%
d. 1%
50. The number of chromosomes in both parents and offspring of a particular species
remains constant because:
Chromosome get doubled after zygote formation
b. Chromosome get doubled after gamete formation
c. Chromosome get halved during gamete formation
d. Chromosome get halved after gamete formation
51.Respiratory organ in case of Periplanta Americana is
a. Skin
b. Book lungs
c. Trachea
d. Gills
52. The first step of photosynthesis is
a. Ionisation of water
b. ATP synthesis
c. Excitation of chlorophyll by light
d. Production of assimilatory power
53. Which among of the following is exclusively marine?
a. Porifera
b. Echinodermata
c. Mollusca
d. Pisces
54. The breakdown of pyruvate into carbon dioxide, energy and water takes place in
a. Mitochondria
b. Cytoplasm
c. Endoplasmic reticulum
d. Ribosome

55.Malachite is an ore of which metal?
a. Iron b. Copper c. Mercury d. Zinc
56.Metals occur in the native state because of their:
a. High electro negativity c. Low reactivity
b. Low density d. All of these
57. The by-product in the manufacture of soap is:
a. Isoprene b. Glycerol c. Butene d. Ethylene glycol
58. The molecular formula of second member of homologous series of ketone is:
a. C ₄ H ₈ O b. C ₃ H ₆ O c. C ₆ H ₁₂ O ₆ d. C ₅ H ₁₀ O
59. Identify the reducing agent in the following reactions:
Pb ₃ O ₄ + 8HCl \rightarrow 3PbCl ₂ + Cl ₂ + 4H ₂ O
a. Pb_3O_4 b. HCl c. $PbCl_2$ d. Cl_2
60. Which of the following salts does not contain any water of crystallisation?
a. Blue vitriol c. Washing soda
b. Baking soda d. Gypsum
61. While cooking, if the bottom of the vessel is getting blackened on the outside, it
means that:
a. The food is not cooked completely
b. The fuel is not burning completely
c. The fuel is wet
d. The fuel is burning completely.
62. Identify the functional group in the following compound: Br-CH ₂ - CH ₂ -CHO
a. Aldehyde c. Bromine
b. Alcohol d. Both bromine and aldehyde.
63. Identify the wrong sequence of the elements in a group:
a. Ca, Sr, Ba c. N, P, As
b. Cu, Au, Ag d. Cl, Br, I
64. When a zinc strip is dipped in the blue solution of copper sulphate for some time,
the colour of the solution changes to:
a. Pink b. Green c. Colourless d. Remains blue
65. While preparing CO ₂ in the laboratory, on which of the following substances HCl is
poured?
a. Pieces of zinc c. Crystals of copper sulphate
b. Pieces of marble d. Ammonium chloride
66. A compound X on strong heating in a boiling tube produces reddish brown fumes
and a yellow residue. Further the compound X produces a white precipitate with
NaOH solution. Identify X.
b. Lead nitrate d. Zinc sulphate
67. The no. of structural isomers of the compound having molecular formula C ₄ H ₉ Br is:
a. 3 b. 5 c. 4 d. 2
68. The laws of reflection hold good for-
a. plane mirror only
b. concave mirror only
c. convex mirror only
d. all mirrors irrespective of their shape

69.A beam of light is incident through the holes on side A and emerges out of the holes on the other face of the box as shown in the Figure. Which of the following could be inside the box?

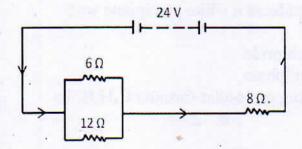
- a. Concave lens
- b. Rectangular glass slab
- c. Prism
- d. Convex lens

70.A child is standing in front of a magic mirror. She finds the image of her head of the same size, the middle portion of her body is bigger and that of the legs smaller. The \(\) following is the order of combinations for the magic mirror from the top.

- a. Plane, convex and concave
- b. Convex, concave and plane
- c. Concave, plane and convex
- d. Plane, concave and convex

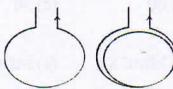
71.In an electrical circuit three incandescent bulbs A, B and C of rating 40 W, 60 W and 100 W respectively are connected in parallel to an electric source. Which of the following is likely to happen regarding their brightness?

- a. Brightness of all the bulbs will be the same
- b. Brightness of bulb A will be the maximum
- c. Brightness of bulb B will be more than that of A
- d. Brightness of bulb C will be less than that of B

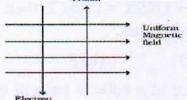

72. What is the minimum resistance which can be made using five resistors each of 5 Ω ?

- a. 1/5 Ω
- b. 10 Ω
- c. 5 Ω
- d. 1Ω

73.A charge of 1.6×10^{-3} C is moved between two points and 3.2 Joule of work is done. What is the potential difference between the two points?


- a. 2000V
- b. 1500V
- c. 1800V
- d. 2200V

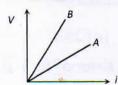
74. The amount of current flowing through the 6Ω resistor is-



- a. 5A
- b. 1.65A
- c. 1.3A
- d. None of the above.

- 75. A certain length of wire carries a steady current. It is bent to form a circular coil of one turn. The same length is now bent more sharply to give a double loop of smaller radius, as shown in fig. The magnetic field at the centre caused by the same current is
 - a. a quarter of its first value
 - b. unaltered
 - c. four times its first value
 - d. one half its first value

76.A uniform magnetic field exists in the plane of paper pointing from left to right as shown in Figure. In the field an electron and a proton move as shown. The electron and the proton will experience



- a. forces both pointing into the plane of paper
- b. forces both pointing out of the plane of paper
- c. forces pointing into the plane of paper and out of the plane of paper, respectively
- d. force pointing opposite and along the direction of the uniform magnetic field respectively
- 77. A body has speed V, 2V and 3V in first 1/3 of distance S, seconds 1/3 of S and third 1/3 of S respectively. Its average speed will be
 - (a) V

- (b) 2V
- (c) $\frac{18}{11}$ V (d) $\frac{11}{18}$ V
- 78. Which of the following is a correct relation

 - (a) $_a\mu_r = _a\mu_w \times _r\mu_\omega$ (b) $_a\mu_r \times _r\mu_w = _w\mu_a$

 - (c) $_{a}\mu_{r} \times _{r}\mu_{a} = 0$ (d) $_{a}\mu_{r} / _{w}\mu_{r} = _{a}\mu_{w}$
- 79. Suppose that the force of earth's gravity suddenly disappears, choose the correct answer out of the following statements
 - (a) The weight of the body will become zero but mass remains the same
 - (b) The mass of the body will become zero but the weight remains the same
 - (c) Both the mass and weight will be doubled
 - (d) Mass and weight will remain the same
- 80.V-i graphs for parallel and series combination of two identical resistors are as shown in figure. Which graph represents parallel combination

(a)A

- (b)B
- (c) A and B both
- (d) Neither A nor B

MENTAL ABILITY TEST(MAT)

81.Find out the next	number in the 101	lowing series 6,20	7,30,48,30, ?
(a) 54	(b) 60	(c) 36	(d) 38
82.Find out the odd	one		
(a) MMXIV	(b) MMCXX	(c) MDCIV	(d) MLVXC
83.If 9 th August 2016	6 was Friday, ther	n what day it was	on 9 th August 1616?
(a) Friday	(b) Thursday	(c) Sunday	(d) Tuesday
84.If USA + USSR negative integers.		+E+A+C+E=?A	all the letters represent distinct non
/ (a) 20	(b) 8	(c) 10	(d) 12
the cube be painted (a) 8 (b) 86.By making at lead putting the pieces	ed? b) 10 (c) 9 ast how many cut s one above anoth	(d) 6 s can a cube be c er?	a. In how many different ways can tut into 210 smaller pieces without
(a) 15 (l	b) 18 (c) 12	(d) 13	
88.If BED = 33; DII (a) 18 (1)	b) 24 (c) 25 D = 34 then DEE b) 36 (c) 54	ED = ? (d) 30 (d) 72	
how many childre (a) 5 (l) 90.Joy's house is in turns left and co Now in which dir (a) 34m, N – V	en in between them b) 4 (c) 3 west direction. It vers 12m and agrection and how fa	m? (d) 2 He moves 12m th ain turns right an	en turns right and covers 5m, then d covers 5m to reach at the shop. ach at the house? W (d) 26M – SE
91.	∑ ₁₈ 10 ∠	954 8 30	12 ? 18
(a) 523	(b) 325	(c) 564	(d) 253
92.T is daughter of Q is mother of R.	Q. P is father of R. How Q related to	d. U is husband of T?	Q. R is sister of S. V is father of U.
(a) Father (b) Sister (c) M	other-in-law (d)	Motner

93.If	24+35=2 15+42=2 84+57=4	24						
Then	69+37=?							
	(a) 106	(b) 6	62 (c)	56	(d) 50			
94.If	B>D; E <a, 1<="" td=""><td>E≥B and D</td><td>≤ C then w</td><td>hich of the</td><td>following</td><td>g is definite</td><td>ely true?</td><td></td></a,>	E≥B and D	≤ C then w	hich of the	following	g is definite	ely true?	
	(a) A≥B	(b) $B \le C$	(c) D <a< td=""><td>(d) E=</td><td>·C</td><td></td><td></td><td></td></a<>	(d) E=	·C			
\ dis	nd out the sregarding co Statements:	ommonly kn Som Som		books.	follows	from the	given stat	ements
C	Conclusions:	I) sor	ne chairs a	re not bool	ks			
		II) so	me books a	are not cha	irs			
		III) so	me doors a	re papers				
((a) only I follows: (c) both I and members of	l II follow	(d) All fo	ollow	other one	a. Uow mo	ny handahal	os will
	there?	a group sna	ike Hallus v	vitii one an	iother one	e. How ma	ny nanusnar	es will
			(c)		(d)	190		
97.Th	e remainder		The second secon					10
	(a) 7 printer num es the book l			(d) 32 ok from 1		ligits in all	. How many	pages
		(b) 1074	(c) 1073	(d) 10	90			
	clock which m, following	gains unifo	ormly was	5mt slow	at 8am, S		5mt 48 sec	fast at
	(a) wed, 7:2	20pm (b) v	ved, 6pm	(c) Th	u, 7pm	(d) Thu	,5pm	
100.	The question the ordered two statemed You can not (A) This is a (C) This is a	pair of state ents are logic t catch the fi summer	ments, who cally consists ish unless in	ere the first tent with a t is summe (B) Yo	t statemen main state	t implies the ment.	,B,C,D. Cho	
	(a) B, D	(b) A	A, C ((c) C, D	(d) A,	В		7

Space for Rough

the fall that the life

APTITUDE TEST FOR ADMISSION INTO +2 SCIENCE (2022-23)

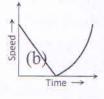
ID NO.	SET A
Time: 3 Hours	SEI ()
(2.00 pm – 5.00 pm)	

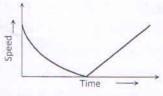
Guidelines to the Candidates:

- 1. This Booklet contains printed 17 pages and 1 blank page for rough work. Any defect found should be brought to the notice of the invigilator immediately.
- 2. Fill in the particulars in the OMR Sheet given to you separately as per the directions given therein.
- 3. This test is of three hours duration.
- 4. There are four choices in every question as (a), (b), (c) and (d). Only one is correct. Each question carries 4 marks.
- 5. (i) The test consists of 100 multiple choice questions comprising of Mathematics (40), Physics (14), Chemistry (14), Biology (12) and Mental Ability (20) carrying maximum of 400 marks.
 - (ii) -1 will be awarded for each wrong answer/multiple answer.
 - (iii) No mark will be awarded for any overwriting/scratching answer.
- 6. Each candidate must show his/her Admit Card to the invigilator whenever required.
- 7. No candidate shall leave his/her seat during examination.
- 8. Do not tear/remove any page of the Booklet.
- 9. Calculation, if any, may be done at the blank pages of this booklet provided at the end for rough work. No calculator is allowed.
- 10. After finishing the test, the booklet with the OMR sheet is to be handed over to the

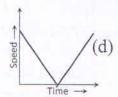
invigilator before le	eaving the room.	
	FASCIMILE STAMP	

GENERAL SCIENCE

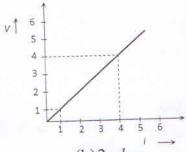

- 1. Match the following columns:
 - i. Cytoskeleton
- A. Hair-like outgrowth
- ii. Flagella
- B. Proximal region of centriole
- iii. Hub


- C. Bristle-like structures
- iv. Fimbriae
- D. Filamentous protein structure
- a. i- C, ii D, iii A, iv B
- b. i-D, ii-C, iii-B, iv-A
- c. i-D, ii-A, iii-B, iv-C
- d. i D, ii A, iii C, iv B
- 2. Pancreas produces
 - a. Three digestive enzymes and hormone
 - b. Three types of digestive enzymes and two hormones
 - c. Two digestive enzymes and one hormone
 - d. Three digestive enzymes and no hormone
- 3. Which enzymes are likely to act on the baked potatoes eaten by a man, starting from the mouth and as it moves down the alimentary canal?
 - a. Pancreatic amylase →salivary amylase → lipases → nucleases
 - b. Disaccharides like maltase→ lipases → nucleases
 - c. Salivary amylase→ pancreatic amylase → disaccharides
 - d. Salivary maltase →carboxypeptidase→ trypsinogen
- 4. Which one of the following functions as a cytoplasmic framework for the cell?
 - a. Golgi apparatus
 - b. Endoplasmic reticulum
 - c. Lysosomes
 - d. Ribosomes
- 5. Which of the following depicts the correct pathway of transport of sperms?
 - a. Rete testis→efferent ductules→epididymis →vas deferens
 - b. Rete testis→ epididymis →efferent ductules →vas deferens
 - c. Rete testis →vas deferens →efferent ductules → epididymis
 - d. Efferent ductules →rete testis →vas deferens → epididymis
- 6. Which one of the following traits of garden pea studied by Mendel was a recessive feature?
 - a. Axial flower position
 - b. Green seed colour
 - c. Green pod colour
 - d. Violet flower colour

7. Syphilis is caused by and transmitted by
a. Virus, sexual contact
b. Bacteria, handshakes
c. Virus, physical contact
d. Bacteria, sexual contact
8. A tall true breeding garden pea plant is crossed with a dwarf true breeding
garden pea plant. When the F1 plants were selfed the resulting genotypes
were in the ratio of:
a. 3:1::Tall:Dwarf
b. 3:1:: Dwarf: Tall
c. 1:2:1:: Tall heterozygous: Tall homozygous: Dwarf
d. 1:2:1:: Tall homozygous: Tall heterozygous: Dwarf
9. Which of the following statements is not correct?
a. Pollen germination and pollen tube growth are regulated by chemical
components of pollen interacting with those of the pistil.
b. Some reptiles have also been reported as pollinators in some plant
species
c. Pollen grains of many species can germinate on the stigma of the
flower, but only one pollen tube of the same species grows into the
style
d. Insects that consume pollen or nectar without bringing about
pollination are called pollen / nectar robbers
10. The first step for initiation of photosynthesis will be
a. Photolysis of water
b. Excitement of chlorophyll molecules due to absorption of light
c. ATP formation
d. Glucose formation
11. Which of the following is the most stable ecosystem?
a. Mountain
b. Ocean
c. Forest
d. Desert
12. If 20 J of energy is trapped at producer level, then how much energy will be
available to peacock as food in the following chain?
Plant →Mice →Snake →Peacock
a. 0.02 J
b. 0.002 J
c. 0.2 J
d. 0.0002 J


- 13.A satellite of the earth is revolving in a circular orbit with a uniform speed v. If the gravitational force suddenly disappears, the satellite will
 - (a) Continue to move with velocity v along the original orbit
 - (b) Move with a velocity v, tangentially to the original orbit
 - (c) Fall down with increasing velocity
 - (d) Ultimately come to rest somewhere on the original orbit
- 14. The value of 'g' at a particular point is $9.8 \, m/s^2$. Suppose the earth suddenly shrinks uniformly to half its present size without losing any mass. The value of 'g' at the same point (assuming that the distance of the point from the centre of earth does not shrink) will now be
 - (a) $4.9 \, m \, / \, sec^2$
- (b) $3.1 \, m \, / \, \text{sec}^2$
- (c) $9.8 \, m \, / \, sec^2$
- (d) 19.6 m / sec²
- 15. Two solids A and B float in water. It is observed that A floats with half its volume immersed and B floats with 2/3 of its volume immersed. Compare the densities of A and B
 - (a) 4:3 (b) 2:3 (c) 3:4 (d) 1:3
- 16.A car travels the first half of a distance between two places at a speed of 30 km/hr and the second half of the distance at 50 km/hr. The average speed of the car for the whole journey is
 - (a) 42.5 km/hr (b) 40.0 km/hr
 - (c) 37.5 km/hr (d) 35.0 km/hr
- 17.A ball is thrown vertically upwards. Which of the following plots represents the speed-time graph of the ball during its height if the air resistance is not ignored





18. The resistivity of alloys = R_{alloy} ; the resistivity of constituent metals R_{metal} .

Then, usually

- (a) $R_{\text{alloy}} = R_{\text{metal}}$
- $(b)^{R_{\text{alloy}} < R_{\text{metal}}}$
- (c) There is no simple relation between R_{alloy} and R_{metal}
- $(d)^{R_{\text{alloy}}} > R_{\text{metal}}$
- 19. Masses of three wires of copper are in the ratio of 1:3:5 and their lengths are in the ratio of 5:3:1. The ratio of their electrical resistances are
 - (a)1:3:5
- (b)5:3:1
- (c)1:15:125
- (d) 125:15:1
- 20. Variation of current and voltage in a conductor has been shown in the diagram below. The resistance of the conductor is.

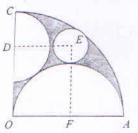
- (a)4 ohm
- (b)2 ohm
- (c) 3 ohm
- (d)1 ohm
- 21. Field at the centre of a circular coil of radius r, through which a current Iflows is
 - (a)Directly proportional to r
 - (b)Inversely proportional to I
 - (c)Directly proportional to I
 - (d)Directly proportional to 12
- 22. The direction of magnetic lines of forces close to a straight conductor carrying current will be
 - (a) Along the length of the conductor
 - (b)Radially outward
 - (c)Circular in a plane perpendicular to the conductor
 - (d)Helical

23.In a current carrying long solenoid, the field produced does not depend upon(a)Number of turns per unit length
(b)Current flowing
(c)Radius of the solenoid
(d)All of the above three
24. A ray of light is incident normally on a plane mirror. The angle of reflection
will be
(a) 0° (b) 90°
(c) Will not be reflected (d) None of the above
25.A cut diamond sparkles because of its
(a) Hardness
(bHigh refractive index
(c)Emission of light by the diamond
(d) Absorption of light by the diamond
26.A double convex lens, lens made of a material of refractive index μ_1 , is
placed inside two liquids or refractive indices μ_2 and μ_3 , as shown.
$\mu_2 > \mu_1 > \mu_3$. A wide, parallel beam of light is
incident on the lens from the left. The lens $-\frac{1}{\mu_2}$
will give rise to $\frac{1}{2}$
(a) A single convergent beam $\longrightarrow\mu_3\mu_3\mu_3\mu_3\mu_3\mu_3\mu_3\mu_3\mu_3\mu_3\mu_3$
(b)Two different convergent beams
(c)Two different divergent beams
(d)A convergent and a divergent beam
27. Which of the following is(are) exothermic process(es)?
i. Condensation of water vapour
ii. Dilution of sulphuric acid
iii. Sublimation of dry ice
iv. Evaporation of water
a. (i) and (iii) b. (ii) only c. (iii) and (iv) d. (i) and (ii)
28.Lead (II) oxide is heated with coke to produce lead and carbon dioxide.
Which of the following statements are incorrect about the given reaction?
i. Lead is getting reduced.
ii. Carbon dioxide is getting oxidised.
iii. Carbon is getting oxidised.
iv. Lead oxide is getting reduced.

a. (i) and (iii)	
b. (ii) and (iii)	
c. (i) and (ii)	
d. (iii) and iv)	
29. Which of the following is not isoeled a. N ³⁻ b. Na ⁺ 30. The mass of a proton is: a. 1.008 amu b. 1.6 x 10 ⁻²⁷ kg 31. Substance P has the following proportion. Melts at 60°C ii. Boils at 85°C iii. Insoluble in water	c. 1.6 x 10 ⁻²⁴ gm d. All of these.
of P and water?	
 a. Paper chromatography b. Fractional distillation c. Crystallisation d. Filtration 32.Malachite is an ore of which meta a. Iron b. Copp 33.The number of hydrogen atoms in a. 12 b. 10 34.The atomic number of the element a. 5 b. 16 35.Which of the following compoun a. C₃H₈O b. C₃H₆O₂ 36.Which of the following is not co a. Emulsion – face cream 	c. 14 d. 8 at which can form an acidic oxide is: c. 12 d. 19 ds contains an aldehydes group? c. C ₃ H ₆ O d. C ₃ H ₇ Cl
 b. Foam – mist c. Aerosol – smoke d. Solid sol – gem stone 37. The total number of electrons pr a. 6.022 x 10²⁴ b. 1.2044 x 10²⁵ 	esent in 32g of methane gas is: c. 12.044 x 10 ²³ d. 60.22 x 10 ²³

1.	The ratio of the ma	ss of P to the mass	of O in the mol	ecule is 2:5.
ii.	The ratio of the ma			
iii.	A molecule contain			
iv.				e molecule is 2.5
a.	(i) and (iii)	c.	99449	
b.	(ii) and (iii)		(ii) and (iv)	
39.W	hich of the followin			g?
	Li = 2,1			8.
b.	P = 2,8,5			
c.	S = 2,6,8			
d.	Mg = 2,8,2			
40.W	hich of the following	g pairs of metals is	extracted by me	eans of electrolytic
rec	duction of their molt	en salts?		
a.	Zn and Mg		c. Mg and	Mn
b.	Al and Fe		d. Al and l	
		MATHEMA	TICS	
41.Th	e mean of n obser	vations is \bar{x} . If	the first observ	vation is increased
by	1, second by 2, the	third by 3, and so	on, then the ne	ew mean is
	(a) $\vec{x} + (2n+1)$	(b) $\bar{x} + \frac{n+1}{2}$ (c)	$)\bar{x} + (n+1)$	(d) $\bar{x} - \frac{n+1}{n}$
42.Th	e sum of n terms of	two AP's are in	the ratio 5n+0	2 0.0n+6 Then
	e ratio of there 18th to		rate ratio on to	7.511 O. Then,
			(4) 176	
10 TC	(a) 321 (b) 321	$(c)^{\frac{175}{321}}$	$(0)_{\overline{321}}$	
	two tangents inclin			n to a circle of
rac	lius 3cm, then length		The state of the s	
	(a) $\frac{3\sqrt{3}}{2}$ cm	(b)6cm	(c)3cm	(d) $3\sqrt{3}$ cm
44.Th	e perpendicular bis	ector of the line s	segment ioining	the points
	1,5) and B(4,6) cuts		ogmone joming	, the points
		(b) (0,-13)	(c) (0.12)	(d) (13 0)
45.If t	he three sides of a			
	angle opposite to t		and y Za, men t	ne measure of
	(a) 45° (b) 30°		(d) 90^{0}	
	(0) 30	(0) 00	(u) 90	
				Page-8
				AT SITE OF

38. The molecular formula P_2O_5 means that:

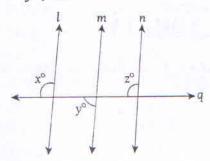

46.A fast train takes 2 hours less for a journey of 300km in	comparison to
a slow train whose speed is 5km/hr less than that of the	ne last
train. The speed of the fast train is equal to	Section 1
(a) 30km/hr (b) 25km/hr (c) 40km/hr (d) 45km/hr	
47. The pair of linear equations $7x - 3y = 4$, $3x + \frac{k}{7}y = 4$ is	s consistent
only when (a) $K = 9$ (b) $k = -9$ (c) $k \neq -9$	(d) $k \neq 7$.
48. If α, β be the zeros of the quadratic polynomial $5x+2$ value of $\alpha + \beta + \alpha\beta$ is	$x^2 + 1$,then
(a) -2 (b) -1 (c) 1 (d) none of the	nese
49. The largest number which divides 70 and 125, leaving and 8 respectively is	remainders5
(a) 13 (b)65 (c)875	(d) 1750
50. If $\sin\theta - \cos\theta = 0$, then the value of $\sin^4\theta + \cos^4\theta$ is	S
(a) 1 (b) $\frac{1}{2}$ (c) $\frac{3}{4}$	$(d)^{\frac{1}{4}}$
51. The area of a circle is 220cm ² . The area of a square inscrib	ped in it is
(a) 49cm^2 (b) 70cm^2 (c) 140cm^2 (d) 15	50cm ²
52. The area of the largest triangle that can be inscribed in a s	semi-circle of
radius r is	
(a) $2r$ (b) r^2 (c) r	(d) \sqrt{r}
53.If HCF of 65 and 117 is expressible in the form of 65	m-117, then
value of m is	
(a)1 (b) 2 (c)3 (d)	
54. If sum of the squares of the zeros of the polynomials	$6x^2 + x + k$ is $\frac{25}{36}$
Then value of k is (a) 2 (b)-3 (c)-2	(d)3
	(4)5
55. In an AP t_{18} — t_{14} =32, then its common difference is (a) 4 (b)8 (c) -8	(d)-4
(a) 4 (b)8 (c) -8 $56.\sin(45^0+A) - \cos(45^0+A)$ is equal to	(4)
(a) $2\cos A$ (b) $2\sin A$ (c)0	(d) 1
57. The co-ordinates of the circumcentre of the triangle form	N. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
	of moponio
O(0,0),P(x,0),Q(0,y) are (a) (x,y) (b) $(\frac{x}{2}, \frac{y}{2})$ (c) $(\frac{x}{2}, \frac{y}{2})$	(d)(y,x)
(4) (3,3)	(N-7 (N-7)) 0

58.A bag contains 5 red balls and some blue balls. If probability of
drawing a blue ball from the bag is four times that of red ball, then
(a) number of blue balls in the bag is
(b)(a)18 (b)20 (c) 24 (d) 16
59. The abscissa of the point of intersection of less than type ogive and
more than type ogive gives
(a) (a) mean (b) mode (c) median (d) none of these
60. Volumes of two spheres are in the ratio of 64:27, there surface area is
(a) (a) 3:4 (b)4:3 (c) 9:16 (d) 16:9
61. The HCF of two numbers is 21 and their sum is 105, then the LCM of the numbers
a) 189 or 147
b) 126 or 84
c) 84 or 145
d) 84 or 105
62. If the eight-digit number 2575d568 is divisible by 54 and 87, the value of the
digit 'd' is
a) 4
b) 7
c) 0
d) 8
63. A test has 50 questions. A student scores 1 mark for a correct answer, $-\frac{1}{3}$ for
a wrong answer and $-\frac{1}{6}$ for not attempting a question. If the net score of a
student is 32,the number of questions answered wrongly by that student
cannot be less than
a) 6
b) 12
c) 3
d) 9
64. The number of real solutions of $(x^2 - 7x + 11)^{x^2 - 11x + 30} = 1$ is
a) 4
b) 5
c) 6
d) No solution

- 65. Out of a group of swans ,7/2 times the square root of the number of swans are playing on the shore of the tank. Remaining two are quarrelling in water. The total number of swans and the number of swans playing on the shore of the tank are
 - a) 14,16
 - b) 16,12
 - c) 14,12
 - d) 16,14
- 66. If $\frac{1}{p+q}$, $\frac{1}{q+r}$, $\frac{1}{r+p}$ are in A.P, then
 - a) p,q,rare in A.P
 - b) q^2, p^2, r^2 are in A.P
 - c) p^2, q^2, r^2 are in A. P
 - d) q,p,r are in A.P
- 67. If 9, a, b, -6 are in arithmetic progression, then a + b is
 - a) 1
 - b) 5
 - c) 15
 - d) 3
- 68. If $x + \frac{1}{x} = 3$, then the value of $x^6 + \frac{1}{x^6}$ is
 - a) 927
 - b) 114
 - c) 364
 - d) 322
- 69. For the equation $3x^2 + px + 3 = 0$, if one of the roots is the square of the other, then the value of p is

 - b) -1
 - c) -6
- 70. If the vertices of a triangle are (1,2), (4,-6) and (3,5), then
 - a) The triangle is right-angled
 - b) The area of the triangle is 12.5 sq. unit
 - c) The points do not form a triangle
 - d) None of these

- 71. Point on x-axis which is equidistant from the points (0,0) and (2,0) is
 - a) (0,1)
 - b) (1,1)
 - c) (1,0)
 - d) (0,2)
- 72. In a quadrant of radius 6a, two semi-circles with centres D and F are cut out as shown in the figure. If a circle with centre E is cut out as shown in the figure, then area (in sq. units) of the remaining part of the quadrant is



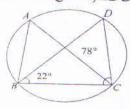
- a) $\frac{5}{2}\pi a^2$
- b) $\frac{1}{2}\pi a^2$
- c) $\frac{3}{2}\pi a^2$
- d) πa^2
- 73. If circumference of the base of a cylinder is 132 cm and its height is 10 cm, the volume of the cylinder will be
 - a) 13860 cm³
 - b) 36450 cm³
 - c) 36540 cm³
 - d) 34560 cm³
- 74. A card is drawn at random from a pack of 52 cards. The probability of getting a red card or an ace is
 - a) $\frac{1}{3}$
 - b) $\frac{1}{2}$
 - c) $\frac{15}{26}$
 - d) $\frac{7}{13}$
- 75. If the arithmetic mean of 9 observations is 100 and that of 6 observations is 80, then the combine mean of all the 15 observations will be
 - a) 100
 - b) 80
 - c) 90
 - d) 92

76. The value of $\frac{\sin^4\theta - \cos^4\theta}{1 - \sin^2\theta}$ is

- a) $1 \cot^2 \theta$
- b) $1 tan^2\theta$
- c) $tan^2\theta 1$
- d) $cot^2\theta 1$

77. In the figure given below, if $l \parallel m \parallel n$ and $x = 125^{\circ}$, then the value of $(z^{\circ} - y^{\circ})$ is

- a) 70°
- b) 80°
- c) 85°
- d) 180°


78.BD and CE are the bisectors of $\angle B$ and $\angle C$ of an isosceles triangle ABC with AB=AC. Which of the following is true?

- a) BD=AC
- b) BD=CE
- c) $\angle B = \angle A$
- d) $\angle C = \angle A$

79. The proportion of the angles of a quadrilateral is 2:5:7:4. What type of quadrilateral is it?

- a) Parallelogram
- b) Rhombus
- c) Cyclic Quadrilateral
- d) Trapezium

80. In the given figure $\angle DBC = 22^{\circ}$ and $\angle DCB = 78^{\circ}$, then $\angle BAC$ is equal to

- a) 90°
- b) 80°
- c) 78°
- d) 22°

MENTAL ABILITY

Directions (Q.81 to Q82): Find the missing term(s) in the following patterns.

81.93, 155, 217, 279, ?

- (a) 341
- (b) 433
- (c) 413
- (d) 373

82.ZA, XC, UF, ?

- (a) QJ
- (b) KP
- (c) IR
- (d) LO

83. If the ratio of two quantities A and B is 6:9 and a mixture of these two are prepared, thenpercentage of A in the mixture is

- (a) 32 1/3 %
- (b) 40%
- (c) 52 1/3 %
- (d) 60%

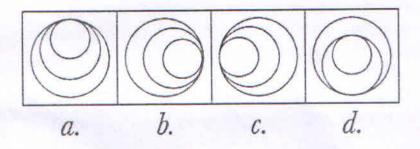
84. If Nitin finds that he is twelfth from the right in a lineof boys and fourth from the left, how many boyshould be added to the line such that there are 28boys in the line?

- (a) 12
- (b) 13
- (c) 14
- (d) 20

(Q.85 to Q.89): A solid cube of each side 12 cm, has been painted red, blue and black on pairs of opposite faces. It is then cut into cubical blocks of each side 2cm. On the basis of given information answer the following questions.

85. How many small cubes are painted on at least three surfaces? (a) 8 (b) 48
(c) 16 (d) 24
86. How many small cubes are painted on exactly one surface?
(a) 48 (b) 120
(c) 64 (d) 9
87. How many small cubes are not painted on anysurface?
(a) 96 (b) 48
(c) 64 (d) 80
88. How many small cubes are painted on at least twosurfaces?
(a) 96 (b) 48
(c) 64 (d) 56
89. How many small cubes are painted on twosurfaces?
(a) 96 (b) 48
(c) 64 (d) 120
90. Veer wants to go to the University. He starts fromhis home which is in the East and comes to acrossing. The road to the left ends in a theatre, straight ahead is the hospital. In which direction is the University? (a) North (b) South (c) East (d) West
91. Starting from a point P, Minal walked 20 meters towards South. He turned left and walked 30 meters. He then turned left and walked 20 meters. He again turned left and walked 40 meters and reached a point Q. How far and inwhich direction is the point Q from the point P? (a) 20 metres West (b) 10 metres East (c) 10 metres West (d) 10 metres North
92. Pointing to a photograph, a woman says, "Thisman's son's sister is my mother-in-law." How is thewoman's husband related to the man in thephotograph?
(a) Grandson (b) Son
(c) Son-in-law (d) Nephew
Directions (Q.93 to Q.95): Read both the givenconclusions and then decide which of the givenconclusions logically follows from the given statements disregarding commonly known facts.

- 93. Statements: All Tall are Short. All the Short are Thin.
 - Conclusions: Some Tall are Thin. No Thin is Short.
 - (a) Only conclusion (I) follows
 - (b) Only conclusion (II) follows
 - (c) Neither conclusion (I) nor (II) follows
 - (d) Both conclusions (I) and (II) are follow
- 94. Statements: Some Bats are Balls. No Ball isStamp.


Conclusions: No Ball is Bat. Some Bats are not Stamps.

- (a) Only conclusion (I) follows
- (b) Only conclusion (II) follows
- (c) Neither conclusion (I) nor (II) follows
- (d) Both conclusions (I) and (II) are follow
- 95. Statements: Some Soldiers are Terrorist. SomeTerrorist are Male.

Conclusions: No Soldier is male. Some Soldiers are male.

- (a) Only conclusion (I) follows
- (b) Only conclusion (II) follows
- (c) Either conclusion (I) or (II) follows
- (d) Both conclusions (I) and (II) are follow
- 96. At what time between 5 pm and 6 pm, hands ofthe clock are inclined at 45°?
 - (a) 19 1/11 minutes past 5
 - (b) 10 10/11 minutes past 5
 - (c) 10 20/11 minutes past 5
 - (d) 15 minutes past 5
- 97. Which year will have the same calendar as 2019?
 - (a) 2023 (b) 2022
 - (c) 2028 (d) 2030

- 98.On 11th Nov. 1989, it was Saturday. What was the day of the week on 11th Nov, 2012?
 - (a) Thursday (b) Friday
 - (c) Sunday (d) Wednesday
- 99. How many times do the hands of a clock are at right angle to each other in a day?
 - (a) 11 (b) 22
 - (c) 44 (d) 33
- 100. Find the odd one out.

Space for Rough Work

LR DAV APTITUDE TEST (2023)

Roll No.	Set	A
Time: 3 Hours	Bet	(A)

Guidelines to the Candidates:

- This Booklet contains printed 14 pages and 2 blank pages for rough work.
 Any defect found should be brought to the notice of the invigilator immediately.
- 2. Fill in the particulars in the OMR Sheet given to you separately as per the directions given therein.
- 3. This test is of three hours' duration.
- 4. There are four choices in every question as (a), (b), (c) and (d). Only one is correct. Each question carries 4 marks.
- 5. (i) The test consists of 100 multiple choice questions comprising Mathematics (40), General Science (40) and mental ability (20) carrying maximum of 400 marks.
 - (ii) -1 will be awarded for each wrong answer/multiple answer.
 - (iii) No mark will be awarded for any overwriting/scratching answer.
- 6. Each candidate must show his/her Admit Card to the invigilator whenever required.
- 7. No candidate shall leave his/her seat during examination.
- 8. Do not tear or remove any page of the Booklet.
- 9. For rough work the blank page at the end of the question booklet may be used. No calculator is allowed.
- 10. After finishing the test, the booklet with the OMR sheet is to be handed over to the invigilator before leaving the room.

MATHEMATICS

1.	If one root of ($(k-1)x^2+kx+1$ is -3,	then value of k is	
(a)	$\frac{4}{3}$	(b) $\frac{-4}{3}$	$(c)\frac{2}{3}$	$(d)^{\frac{-2}{3}}$
2.	The area of a tr	riangle formed by th	ne lines $x=3$, $y=4$ and	nd x=y is
(a)	$\frac{1}{2}$ sq. unit	(b) 1 sq. unit	(c) 2 sq. units	(d) none of these
3.	If the equation	$(a^2 + b^2)x^2 - 2(a^2 + b^2$	$(c+bd)x+c^2+a$	$l^2 = 0$ has equal roots
	, then			
(a)	ab=cd	(b) ad=bc	(c)ad= \sqrt{bc}	(d) $ab = \sqrt{cd}$
4.	If sum of the ro	oots of the equation	$x^2 - (k+6)x + 2$	2(2k-1)=0 is
	equal to half of	f their product, then	k=	ercelly established
(a)	6	(b)7	(c) 1	(d) 5
5.	If sum of n terr	ns of an A.P. is $3n^2$	$^2 + 5n$, then which	of its term is 164?
(a)	26 th	(b) 27 th	(c) 28 th	(d) none of these
6.	If three points	$(0,0)$, $(3,\sqrt{3})$ and $(0,0)$	(3,p) form an equila	teral triangle, then p=
(a)	2	(b) -4	(c) -3	(d) none of these
7.	If P(2,4), Q(0,	3), R(3,6) and S(5,	y) are vertices of a	parallelogram PQRS,
	then value of y			
(a)	7	(b)5	(c) -7	(d) -8
8.	In A ABC, XX	II BC, cuts AB at	X and AC at Y. If I	BY bisects ∠XYC,
	then			
(a)	BC=CY	(b) BC=BY	(c) BC\neq CY	(d) BC#BY
9.	If $\cos \theta = \frac{2}{3}$, the	en $2Sec^2\theta + 2tan^2$	² θ -7=	
(a)	1	(b)0	(c) 3	(d) 4
10.	$.9Sec^2A - 9Ta$	$n^2A=$		
(a)	1	(b)8	(c)9	(d)0
11.	If perimeter of	a semi-circular prot	tractor is 108cm, the	en its diameter is
(a)	36 cm	(b)24cm	(c)42cm	(d)48cm
12.	The area of inc	ircle of an equilater	al triangle of side 4	2cm is
(a)	$22\sqrt{3}cm^2$	(b) 213 cm ²	(c) 924 cm ²	(d) 462 cm ²
13.	If perimeter of	a circle is equal to t	that of a square, the	n ratio of their areas is
(a)	22:7	(b) 14:11	(c)7:22	(d)11:14
14.	Volumes of two	o spheres are in the	ratio 64:27. The rat	tio of their surface
	areas is			
(a)	1:2	(b) 2:3	(c) 9:16	(d) 16:9

15. The probabi	lity of thro	wing a numb	er greater than	2 with a fair dice is
$(a)^{\frac{3}{5}}$	(b) $\frac{2}{5}$	($\left(\frac{2}{3}\right)^{\frac{2}{3}}$	$(d)\frac{1}{2}$
16. What is the	3		3	adays?
$(a)^{\frac{5}{7}}$	(b) $\frac{6}{7}$	(6	$(2)^{\frac{2}{7}}$	$(d)\frac{4}{7}$
17.If Sinθ+Cos				
(a) 1			c) -2	(d) 2
18. The point on	X-axis wl	hich is equidi	stant from the	points (-1,0) and (5,0) is
(a) (0,2)	(b) (2,0) (0	(3,0)	(d) (0,3)
19. The area of a	a triangle f	formed by the	$\lim \frac{x}{a} + \frac{y}{b} = 1$	with the coordinate axes
is				
(a) ab	(b) 2ab	($(a) \frac{1}{2}ab$	$(d)\frac{1}{4}ab$
20. If two tange	nts are inc	lined at an an	gle of 60° are	drawn to a circle of radiu
3cm, then le	ength of ea	ch tangent is		
(a) $\frac{3\sqrt{3}}{2}$ cm	(b) 6cm	1 (0	e) 3cm	(d)√3
21.The mean o	f n observ	vations is \bar{x}	. If the first	observation is increased
				then the new mean is
(a) \bar{x} + (2n+1)	(b) \bar{x} +	$\frac{n+1}{2}$ (c) \bar{x}	+ (n+1)	(d) $\bar{x} - \frac{n+1}{2}$
		wo AP's arei	n the ratio 5n+	9:9n+6. Then, the ratio
of their 18th term	ı is			nelicos la valuable
(a) $\frac{179}{321}$	$(b)^{\frac{178}{321}}$	(c)	175	$(d)_{321}^{176}$
23. If two tanger	its inclined	d atan angleof	60°, are drawn	to a circle of radius
3cm, then length				
(a) $\frac{3\sqrt{3}}{2}$ cm	(b)6cr	n (c)3	cm (d	$3\sqrt{3}$ c
				ing the points A (1,5) and
B (4,6) cuts the				
(a) (0,13)	(1	b) (0, -13)	(c) (0,12)	(d) (13,0)
	opposite t	to the longest		then the measure of
26. The value of	THE RESIDENCE AND ADDRESS OF THE PARTY OF TH		$0 = \frac{1}{1} (0 < \theta < 90)$	0) is
			4	
(a)	2	(0) -	$(c)\frac{\pi}{4}$	(d) $\frac{\pi}{6}$

- 27. The shadow of a tower standing on a level ground is x meters long when the sun's altitude is 30° , while it is y metres long when the sun's altitude is 60° . If the height of the tower is $45 \frac{\sqrt{3}}{2}$ m, then the value of x - y is
- (a) 45m
- (b) $45\sqrt{3}$ m (c) $\frac{45}{\sqrt{3}}$ m (d) $45\frac{\sqrt{3}}{2}$ m

- 28. The ratio in which the line segment joining the points A(-12,2) and B(8,3) is divided by the y-axis is
- (a) 2:1
- (b) 1:4

- (c) 1:3 (d) 3:2
- 29. The pair of linear equations 7x 3y = 4 and $3x + \frac{k}{7}y = 4$ is consistent only when
- (a)K = 9
- (b)k = -9
- (c) $k \neq -9$ (d) $k \neq 7$.
- 30. If α, β be the zeros of the quadratic polynomial $5x+2x^2+1$, then value of $\alpha + \beta + \alpha\beta$ is
- (a) -2 (b) -1
- (c)1
- (d) none of these

DIRECTIONS:

In the question number 31 to 35, a statement of assertion (A)is followed by a statement of Reason (R). Choose the correct option

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)
- (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.
- Assertion (A): Common difference of the AP having sum of n terms 31. as an²+ bn is 2a.

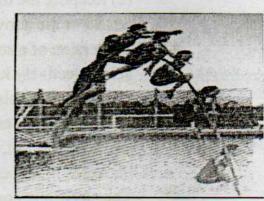
Reason (R): If sum of n terms of an AP is denoted by S_n, then its nth term is $S_n - S_{n-1}$.

- **Assertion** (A): $\sqrt{2} + \sqrt{3}$ is an irrational number. 32. Reason (R): Sum of two irrational numbers is irrational.
- 33. Assertion (A): A die is thrown once. Then the probability of getting a number greater than 6 is 1.

Reason (R): Probability of an impossible event = 0.

- A parallelogram circumscribing a circle is a Assertion (A): 34. rhombus.
 - Reason (R): If two tangents are drawn to a circle from an external point, then they subtend equal angles at the centre.

35. Assertion (A): If the median and mode of a distribution are 21.2


and 21.4 respectively, then its mean is 21.1.

Reason (R): Mean, median and mode are related by the relation mode = 2median - 3 mean.

CASE BASED QUESTION

The Figure given alongside shows the path of a diver, when she takes a jump from the diving board. Clearly it is a parabola.

Annie was standing on a diving board, 48 feet above the water level. She took a dive into the pool. Her height (in feet) above the water level at anytime 't' in seconds is given by the polynomial h(t) such that

$$h(t) = -16t^2 + 8t + k$$
.

36. What is the value of k?

(a) 0

$$(b) - 48$$

(c) 48

(d) 48/-16

37. At what time will she touch the water in the pool?

(a) 30 seconds

(b) 2 seconds

(c) 1.5 seconds

(d) 0.5

38. Rita's height (in feet) above the water level is given by another polynomial P(t) with zeroes -1 and 2. Then p(t) is given by -

(a)
$$t^2 + t - 2$$

seconds

(b)
$$t^2 + 2t - 1$$

(c)
$$24t^2 - 24t + 48$$

$$(d) - 24t^2 + 24t + 48$$

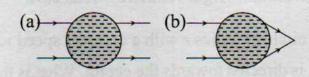
- 39. A polynomial q(t) with sum of zeroes as 1 and the product as -6 is modelling Anu's height in feet above the water at any time t (in seconds). Then q(t) is given by
 - (a) $t^2 + t + 6$
 - (b) $t^2 + t 6$
 - $(c) -8t^2 +8t +48$
 - (d) $8t^2 8t + 48$
- 40. The zeroes of the polynomial $r(t)=-12t^2+(k-3)t+48$ are negative of each other. Then k is
 - (a) 3
- (b) 0

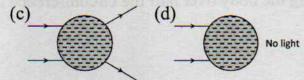
- (c) 1.5
- (d) -3

GENERAL SCIENCE

- 41. Which one will help to accelerate the process of evaporation of a liquid kept in an open china dish?
 - (a) Keeping the dish in open
 - (b) Blowing air into the liquid
 - (c) Keeping the dish under a running fan
 - (d) All of the above
- 42. Dispersion of a solid in a liquid, a liquid in a gas and a liquid in a liquid are respectively known as:
 - (a) Aerosol, emulsion, sol
 - (b) Sol, aerosol, emulsion
 - (c) Emulsion, sol, aerosol
 - (d) Aerosol, sol, emulsion
- 43. The electronic configuration of Cl is:
 - (a) 2, 8, 7
 - (b)2, 8, 8
 - (c)2, 8, 6
 - (d) 2, 8, 8, 1
- 44. Which of the following has the highest no. of atoms?
 - (a) 100 g of Na
 - (b) 100 g of Al
 - (c) 100 g of C
 - (d) 100 g of O
- 45. Select the one that when used would be considered as best condition for liquification of a gas.
 - (a) Increase the temperature
 - (b) Decrease the pressure
 - (c) Increase the pressure and decrease the temperature
 - (d) Decrease the pressure and increase the temperature.
- 46. Identify the reducing agent in the following reactions:

$$Pb_3O_4 + 8HCl \rightarrow 3PbCl_2 + Cl_2 + 4H_2O$$

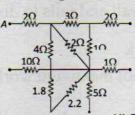

- (a) Pb₃O₄
- (b) HCl
- (c) PbCl₂
- $(d)Cl_2$


- 47. Which of the following salts does not contain any water of crystallisation?
 - (a) Blue vitriol
 - (b) Washing soda
 - (c) Baking soda
 - (d) Gypsum
- 48. While cooking, if the bottom of the vessel is getting blackened on the outside, it means that:
 - (a) The food is not cooked completely
 - (b) The fuel is not burning completely
 - (c) The fuel is wet
 - (d) The fuel is burning completely.
- 49. Identify the functional group in the following compound: Br-CH₂- CH₂- CHO
 - (a) Aldehyde
 - (b) Alcohol
 - (c) Bromine
 - (d) Both bromine and aldehyde.
- 50. Identify the wrong sequence of the elements in a group:
 - (a) Ca, Sr, Ba
 - (b) Cu, Au, Ag
 - (c) N, P, As
 - (d) Cl, Br, I
- 51. When a zinc strip is dipped in the blue solution of copper sulphate for some time, the colour of the solution changes to:
 - (a) Pink
 - (b) Green
 - (c) Colourless
 - (d) Remains blue
- 52. While preparing CO₂ in the laboratory, on which of the following substances HCl is poured?
 - (a) Pieces of zinc
 - (b) Pieces of marble
 - (c) Crystals of copper sulphate
 - (d) Ammonium chloride

- 53. Crypts of Lieberkühn are present in
 - (a) pancreas and secrete pancreatic juice
 - (b) stomach and secrete dilute HCl
 - (c) small intestine and secrete digestive enzymes
 - (d) stomach and secrete trypsin
- 54. Which one of the following pairs matches a hormone with a disease resulting from its deficiency?
 - (a) Relaxin- gigantism
 - (b) Prolactin- cretinism
 - (c) Parathyroid hormone- tetany
 - (d) Insulin-diabetes insipidus
- 55. Prokaryotic genome consists of
 - (a) DNA with histones
 - (b) DNA without histones
 - (c) DNA or histones
 - (d) Histones only
- 56. The major component of the cell wall in bacterial prokaryotes is a polymer named
 - (a) Cellulose
 - (b) Chitin
 - (c) Xylan
 - (d) Peptidoglycan
- 57. Afferent nerve fibre carries impulses from
 - (a) Effector to central nervous system
 - (b) Receptors to central nervous system
 - (c) central nervous system to muscles
 - (d) central nervous system to receptors
- 58. Lining of intestine in man is
 - (a) Ciliated
 - (b) Keratinized
 - (c) Brush bordered
 - (d) Nonkeratinized
- 59. Pectin of cell wall is
 - (a) excretory product
 - (b) waste product
 - (c) secretory product
 - (d) all of these

- 60. A phylum that includes exclusively marine animals is
 (a) Porifera
 (b) Coelenterata
 (c) Protozoa
 (d) Echinodermata
 61. A Mendelian experiment consisted of breeding tall per
- 61. A Mendelian experiment consisted of breeding tall pea plants bearing violet flowers with short pea plants bearing white flowers. The progeny of all bore violet flowers but almost half of them were short. This suggests that the genetic make-up of the tall parent can be depicted as
 - (a) TTVV
 - (b) TTvv
 - (c) TtVV
 - (d) TtVv
- 62. Which of the following option shows the transport of oxygen to the cell correctly?
 - (a) Lungs- pulmonary vein right atrium right ventricle aorta body cells
 - (b) Lungs-pulmonary vein left atrium left ventricle aorta body cells
 - (c) Lungs- pulmonary artery- left atrium left ventricle vena cava body cells
 - (d) Lungs- pulmonary artery- right atrium right ventricle vena cava body cells
- 63. A body of mass m is moving in a circle of radius r with a constant speed v. The force on the body is $\frac{mv^2}{r}$ and is directed towards the centre. What is the work done by this force in moving the body over half the circumference of the circle
 - (a) $\frac{mv^2}{mr^2}$ (b) Zero
 - (c) $\frac{mv^2}{r^2}$ (d) $\frac{\pi r^2}{mv^2}$
- 64. If the unit of force and length each be increased by four times, then the unit of energy is increased by
 - (a) 16 times
- (b)8 times
- (c)2 times
- (d)4 times
- 65.A man pushes a wall and fails to displace it. He does
 - (a) Negative work
 - (b) Positive but not maximum work

- (c) No work at all
- (d) Maximum work
- 66. The same retarding force is applied to stop a train. The train stops after 80 m. If the speed is doubled, then the distance will be
 - (a) The same
- (b)Doubled
- (c) Halved
- (d) Four times
- 67. Two identical solid copper spheres of radius *R* placed in contact with each other. The gravitational attraction between them is proportional to
 - $(a)R^2$
- (b) R^{-2}
- $(c)R^4$
- $(d)R^{-4}$
- 68. If the earth rotates faster than its present speed, the weight of an object will
 - (a) Increase at the equator but remain unchanged at the poles
 - (b) Decrease at the equator but remain unchanged at the poles
 - (c) Remain unchanged at the equator but decrease at the poles
 - (d)Remain unchanged at the equator but increase at the poles
- 69. A water drop in air refracts the light ray as


- 70. A thin rod of 5 cm length is kept along the axis of a concave mirror of 10 cm focal length such that its image is real and magnified and one end touches the rod. Its magnification will be
 - (a) 1

(b)2

-(c)3

- (d)4
- 71. What is the equivalent resistance between the points A and B of the network

(a) $\frac{57}{7}\Omega$

XI-ENTRANCE/SET-A PAGE 10

- $(b)8\Omega$
- (c)6Ω
- $(d)\frac{57}{5}\Omega$

DIRECTIONS:

In the question number 72 to 76, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)
- (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.
- 72. Assertion(A): Stimulus is interpreted by the brain and not by the sense organs.
 - Reason(R): Sense organs act as transducers, transforming the stimulus energy into impulse energy.
- 73. Assertion(A): Electronegativity of Fluorine is greater than that of oxygen.

 Reason(R): The electronegativity of the elements increases along a period since metallic character increases.
- 74. **Assertion (A)**: A person working on a horizontal road with a load on his head does no work
 - Reason (R): No work is said to be done, if directions of force and displacement of load are perpendicular to each other.
- 75. Assertion (A): The work done during a round trip is always zero.
 - Reason (R): No force is required to move a body in its round trip.
- 76. Assertion (A): Critical angle of light passing from glass to air is minimum for violet colour.
 - Reason (R): The wavelength of blue light is greater than the light of other colours.

CASE BASED QUESTION

Human digestive system consists of main organs buccal cavity, oesophagus, stomach, small intestine and large intestine leading into rectum and anus. Salivary glands, liver, pancreas act as accessory organs. Various others glands like crypts of Lieberkühn, Bruner's glands also play an important role. Enzymes secreted from various glands helps in the

process of digestion. Intestinal juice contains enterokinase also called as activator enzyme.

- 77. In which of the following, proteins are absent?
 - (a) pancreatic juice
 - (b) saliva
 - (c) bile
 - (d) intestinal juice
- 78. During prolonged fasting the sequence of organic compounds used by body is
 - (a) carbohydrates, fats, proteins
 - (b) fats, carbohydrates, proteins
 - (c) carbohydrates, proteins, lipids
 - (d) protein, lipids, carbohydrates
- 79. Brunner's glands are found in
 - (a) stomach
 - (b) ileum
 - (c) colon
 - (d) duodenum
- 80. Pepsin acts in
 - (a) basic medium
 - (b) acidic medium
 - (c) neutral medium
 - (d) all types of media

Mental Ability

- 81. Kamal remembers that her brother Dinu's birthday falls after 20th May but before 28th May, while Garima remembers that Dinu's birthday falls before 22nd may but after 12th MAY on what date Dinu's birthday falls?
 - a)22nd May b)21ST May c)Can't be determine d)None of these
- 82. What is the missing number in the given series? 50,30,40,75,170,?
 - a)360
- b)450
- c)320
- d)295
- 83. In a certain code language "ACTIVATE" is coded as "BCUIWAUE". How is "CATALYST" coded in that language?
 - a) ADYMYUAT b) ADMYUATT c) DAUAMYTT d) DUAAMYTT
- 84. The given options show four time instances. In which of these cases, the hour hand and minute hand will be closest to each other when this time is seen on a clock?
 - a) 4:00
- b)10:00
- c) 6:30
- d)2:15

a)31m	b)54m	c)93m	d)991	n
	for +, M stands f 14N10L42P2N		tands for ×, P st	ands for ÷, then What is
a)150	b)143	c)153	d)160) and 10 to sail a in S
	of the following o the first pair		n that will make	e the second pair
a)5 88.Find out the disregarding statements: Conclus a) only conc b) only conc c) either cond d) both conc 89.Find out the disregarding Statements:	g commonly knows some dogs are All cats are pisions: I) some carries II) some dilusion I follows clusion I OR II clusion I and II	c)8 hich logical own facts. cats gs. ats are dogs ogs are pig s follows follows. hich logical own facts. water. are clean. are stones.	d)9 ally follows from	n the given statements
b) only concept the concept of the c	atleast a pair of b)FORCE	ws II follows I follows. are given consecutiv c)CRAI The daught on of man'	in the option. In we alphabets? NE d) BLUSI ter of your only 's sister to the w	sister is the sister of my oman?
rational ent				XI-ENTRANCE/SET-A PAGE 13

85.A boy walked 931m to the north, then he turns to his left and walks 31 m. After that, he moves 931m to his left and finally he turns to the right and

moves 23 m. How far is he from the starting point?

92.If Thurseday falls 2 days after tomorrow, then what day of the week was it in
three days before yesterday? a)Monday b)Tuesday c)Wednesday d)Thursday
93. Thailand: Baht:: Myanmar:?
a)Peso b)Kyat c)Dinar d)Rial 94.Rabbit : Leap :: Duck :?
a)Fly b)Swoop c)Flit d)Waddle
95. Mohan and Sujit are ranked seventh and eleventh respectively from the top
in a class of 31 students. What will be their respective ranks from the bottom in the class?
a) 20 th and 24 th b) 24 th and 20 th
c) 25 th and 21 st d) 26 th and 22 nd
96. Vishal is elder than Akash but younger than Shivansh, Yaksh is younger
than Deepak but elder than Akash. If Shivansh is younger than Deepak, then who is eldest?
a)Akash b)Vishal c)Shivansh d)Deepak
Directions(97-98): A big cube is painted with red color. Then it is cut into some
small cubes in such a way that the length of small cube is (1/7)th of the length of big cube. now answer the following questions.
97. How many small cubes are there in all?
a)342 b)343 c)340 d)431
98. How many small cubes do not have any of the faces painted? a)120 b)115 c)124 d)125
Direction(99-100):Read the following information carefully. And answer
the following questions.
D,E,F,H,I are seated in a circle facing toward the center. A,B,C are also seated
in the same circle but two of them are not facing the center. F is sitting 2nd to
the left of C. E is 3 rd to the right of A. B is 3 rd to the left of D, who is immediate
neighbour of H and I. C is second to the right of D and third to the right of B.
99. If H is sitting on the immediate right of E then what is possible position of
H with respect to C? a)Immediate right b)3 rd to the right c)3 rd to the left d) 2 nd to the left
100. Which of the following pair facing outside?
a) AE b) CE c) CB d) HI

SPACE FOR ROUGH WORK

APTITUDE TEST FOR ADMISSION INTO +2 SCIENCE (2024-25)

ROLL NO.

A 2 9 4 2 4 2 3 3

Time: 3 Hours

(9.00 am - 12.00 noon)

SET

Guidelines to the Candidates:

- ➤ This Booklet contains printed 15 pages and 1 blank page for rough work.

 Any defect found should be brought to the notice of the invigilator immediately.
- > Fill in the particulars in the OMR Sheet given to you separately as per the directions given therein.
- > This test is of three hours duration.
- ➤ The question paper consists of 100 multiple choice questions comprising of Mathematics (40), General Science (40) and Aptitude (20) carrying maximum of 400 marks.
- There are four choices in every question as (a), (b), (c) and (d). Only one is correct. Each question carries 4 marks.
- > -1 will be awarded for each wrong answer/multiple answer.
- ➤ No mark will be awarded for any overwriting/scratching answer.
- No candidate shall leave his/her seat during examination.
- Do not tear/remove any page of the Booklet.
- > Calculation, if any, may be done at the blank page of this booklet provided at the end for rough work. No calculator is allowed.
- After finishing the test, the booklet with the OMR sheet is to be handed over to the invigilator before leaving the room.

LRDAT/2024/3 Page 1 of 16

APTITUDE TEST

1. Solve the following analogy.

Horse: Stable: Pig: -----

(a) Den

(c) Sty

(b) Byre

(d) Hive

2. Find the odd one.

(a) 256

(c) 1331

(b) 576

(d) 441

Direction (Q3 - 6): Here you have to assume the given statements to be true even if they differ from generally known facts. Study all the conclusions and then decide which of the conclusions logically follows.

Give answer as

- a) If both I and II follow
- b) If only conclusion II follows
- c) If either I OR II follows
- d) If neither I nor II follows
- 3. Statements: Some rooms are stones.

All stones are radios.

Conclusions: I. some rooms are radios.

II. some stones are rooms.

4. Statements: All roads are poles.

No pole is house.

Conclusions: I. some roads are houses.

II. Some houses are poles.

5. Statements: All birds are trees.

Some trees are hens.

Conclusion: I. some birds are hens.

II. Some hens are trees.

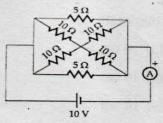
6. Statement: All tables are chalks.

All chalks are chairs.

Conclusions: I) All chairs are tables.

II)All tables are chairs.

7.	If A is the father of B and B is the father	of C, then how is C related to A?	
	(a) Grandson		
	(b) Grand daughter	and to require this care in was not include an all a	
	(c) Grandfather		
	(d) Can't be determined.		
8.	What day of the week was on 13th April,	1723?	
	(a) MONDAY		
	(b) TUESDAY		
	(c) WEDNESDAY		
	(d) FRIDAY		
9.	Solve the following analogy.		
	AZCX: BYDW: HQJO:		
	(a) GREP	(c) IPKN	
	(b) IPKM	(d) GRJP	
10	. Sam ranked 9th from the top and 38 th fr	om the bottom in a class. How many students are	e
	there in the class?		
	(a) 46	(c) 45	
	(b) 47	(d).48	
11	.If 34 is related to 12, in the same way 59	is related to	
	(a) 38	(c) 26	
	(b) 45	(d) 14	
12		an be formed with the letter ESRO using each	
	letter once in each word?		
	(a) None	(c) Two	
	(b) One	(d) Three	
13		1 to 100, then how many times do you write 3?	
	(a) 19	(c) 21	
	(b) 11	(d) 20	
14	A shepherd has 17 sheep. All but nine d		
14		(c) 9	
	(a) None	(d) 17	
	(b) 8	(d) 17	

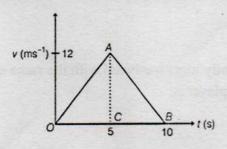

LRDAT/2024/3 Page 3 of 16

(a) 18	s 18 th in the class of 49 students. What is his rank from the last? (c) 19	
(b) 31	(d) 32	
Rs. 500 and 3:2:5. If	et match there are three types of tickets say A, B and C each costing Rs.1000, and Rs. 200 respectively. The ratio of the ticket sold of category A, B and C I if the total collection from selling the tickets is Rs. 2.5 crore. Find the total citckets sold.	
(b) 40000		
(c) 45000		
(d) 60000		
	of ages of two boys is 5: 6. After two years the ratio will be 7: 8. The ratio of	
	fter 12 years will be:	
(a) 22:24	유럽에 위한 아니라 하나 아니는 아이들이 되었다. 이 가는 아이들이 아이들이 아이들이 아니는 아니는 아이들이 아이들이 나를 하는데 아니는 아이들이 아니는	
(b) 15:16		
(c) 17:18		
(d) 11:12	B B 하는 것은 것이 있는 것이 없는 것이 없	
	1, the ratio of boys to girls is 4:3 and the ratio of girls to teachers is 8:1. The	
	idents to teachers is	
(a) 56:3		
(b) 55:1		
(c) 49:3		
(d) 56:1		
	ratio of 5: 4 between two numbers. If 40 per cent of the first is 12, then 50%	of
	number is:	
(a) 18		
(b) 12		
(c) 42		
(d) 20		
	ge age of boys in the class is twice the number of girls in the class. The ratio o	f
boys and g	girls in the class of 50 is 4:1. The sum of the ages (in years) of the boys in the	
class is:		
(a) 2000		
(b) 2500		
(c) 800		
(d) 400	100 to	

LRDAT/2024/3 Page 4 of 16

GENERAL SCIENCE

- 21. An electric bulb is marked 100 W,230V. If the supply drops to 115 V, what is the heat energy produced by the bulb in 20 min? Calculate the current flowing through it.
 - (a) 50 kJ and $\frac{5}{23}$ A
 - (b) 35 kJ and $\frac{2}{11}$ A
 - (c) 30 kJ and $\frac{5}{23}$ A
 - (d) 40 kJ and $\frac{2}{11}$ A
- 22. Calculate the amount of current flowing through the circuit.
 - (a)5 A
 - (b) 4A
 - (c) 2.5A
 - (d)8A



- 23.A cylindrical wire P has resistance 10Ω . A second wire Q has length and diameter half that of P. If the material of both the wires is same, then resistance of wire Q is
 - (a) 10Ω
- (b) 20Ω
- (c) 5Ω
- (d) 5 2 Ω
- 24. Ten one-rupee coins are put on top of each other on a table. Each coin has mass m. The reaction of the 6thcoin (counted from the bottom) on the 7th coin is
 - (a) 4mg

(b) 6mg

(c) 7mg

- (d) 3mg
- 25. The speed-time graph of a particle moving along a fixed direction is as shown in the figure. The distance traversed by the particle between t = 0 s to t = 10 s is

(a) 20 m

(c) 40 m

(b) 60 m

- (d) 80 m
- 26.A small magnet is placed perpendicular to a uniform magnetic field. The force acting on the magnet will result in
 - (a) Rotational motion
 - (b) Translational motion
 - (c) No motion at all
 - (d) Translational and rotational motion both

- 27.A glass slab is placed in the path of a beam of convergent light ,then the point of convergence of light

 (a) Moves towards the glass slab
 (b) Moves away from the glass slab
 (c) Remains at the same point
- 28. A virtual, erect and magnifiede image of an object is to be produced with a concave mirror of focal length 12 cm. Which of the following object distance should be chosen for this purpose?
 - (a) 10 cm

(d) Undergoes a lateral shift

- (b) 14 cm
- (c) 18 cm
- (d) 24 cm
- 29. A stone is projected vertically up to reach maximum height h. The ratio of its kinetic energy to its potential energy at a height 4/5 h, will be
 - (a) 5:4

(b) 4:5

(c) 1:4

- (d) 4:1
- 30. A spherical mirror forms an erect image four times the size of the object. If the distance between the object and the image is 100 cm, the nature and the focal length of the mirror are
 - (a) Concave, (80/3) cm
 - (b) Convex, (80/3) cm
 - (c) Concave, 20 cm
 - (d) Convex, 20 cm
- 31.A hockey player is moving northward and suddenly turns westward with the same speed to avoid an opponent. The force that acts on the player is
 - (a) Frictional force along westward
 - (b) Muscle force along southward
 - (c) Frictional force along south-west
 - (d) Muscle force along south-west
- 32. An observer standing at the sea coast observes 54 waves reaching the coast per minute. If the wavelength of the waves is 10 m, find the velocity.
 - (a) 54 m/s
 - (b) 10 m/s
 - (c) 9 m/s
 - (d) 5.4 m/s

LRDAT/2024/3 Page **6** of **16**

33.A metal salt MX when exposed to light splits is used in making ornaments whereas gas X ₂ :	
could be the metal M and the gas X2 respective	
(a) Gold, oxygen (b) gold, chlorine	(c) silver, oxygen (d) silver, chlorine
34. Among the following reactions, which is a redo	ox reaction?
(a) CaCO ₃ (s)	$CaO(s) + CO_2(g)$
(b) Mg (s) + CuO (s) \longrightarrow	MgO(s) + Cu(s)
(e) NaOH (aq) + HCl (aq)	NaCl (aq) + $H_2O(1)$
(d) KBr (aq) + AgNO ₃ (aq)	KNO_3 (aq) + AgBr (s)
35. Match the acids given in column (I) with the choose the correct option.	ir correct source given in column (II) and
Column (I)	Column (II)
(A) Lactic acid	(i) Lemon
(B) Citric acid	(ii) Tomato
(C) Acetic acid	(iii) Vinegar
(D) Oxalic acid	(iv) Curd
(a) $A - ii$, $B - iii$, $C - iv$, $D - i$	(c) $A-iv$, $B-i$, $C-ii$, $D-iii$
(b) $A - iv$, $B - i$, $C - iii$, $D - ii$	(d) $A-ii$, $B-iii$, $C-i$, $D-iv$
36. Which of the following should be the correct potential of 6C, 7N, 8O and 9F?	order of decreasing value of 2 nd ionisation
(a) $F > O > N > C$ (b) $O > F > N > C$	(c) $O > F > C > N$ (d) $F > N > O > C$
37. Which of the following compounds have higher (a) Ethane (b) ethene (c) ethyne	st electronegativity? (d) equal in all
38. Match column I with column II and select the the columns:	
Column (I)	Column (II)
(A) Radioactive	(i) Pt
(B) Lightest metal	(ii) I ₂
(C) Noble metal	(iii) Li
(D) Liquid non-metal	(iv) U
(E) Solid volatile non-metal	(v) Br ₂
	(vi) H
A P C D F	gur qodismo sin slad.

ii

ii

ii

ii

i

i

iv

iv

iii

vi

iii

vi

(a)

(b)

(c)

(d)

iv

iv

- 39. Riva took a thin strip of filter paper. She did an experiment by putting a small drop of green ink on the baseline drawn 3 c.m. above one of the shortest edges of filter paper and inserting the paper into a jar containing water so that the drop of ink on the paper is just above the water level. She found that the position of blue color pigment is higher than that of yellow. What type of experiment was performed by Riva and which color is more soluble in water?
 - (a) Paper chromatography, yellow
 - (b) Paper chromatography, blue
 - (c) Column chromatography, green
 - (d) Column chromatography, yellow
- 40. Carbon and hydrogen combine in the ratio of 4:1 by mass to form ethane. What mass of hydrogen gas would be required to react completely with 36 g of carbon?
 - (a) 6 g
- (b) 9 g
- (c) 12 g
- (d) 3 g
- 41. Stomata are epidermal outgrowths present on epidermal surfaces of leaf and young stem.

 The stomata are restricted to ----- in monocot leaves.
 - (a) Lower epidermis
 - (b) Upper epidermis
 - (c) Mesophyll zone
 - (d) Both lower and upper epidermis.
- 42. Enzymes enhance the rate of metabolic processes by:
 - (a) Lowering of the activation energy.
 - (b) Increasing the activation energy.
 - (c) Without changing the activation energy.
 - (d) Either lowering or increasing the activation energy.
- 43. Myogenic muscles are the:
 - (a) Specialized muscles in the mammalian gut.
 - (b) Specialized muscles in the mammalian heart.
 - (c) Specialized muscles in the mammalian pancreas.
 - (d) Specialized muscles in the mammalian kidney.
- 44. The given characteristic features represent in which phylum?
 - 1) Their body is porous.
 - 2) Spongocoel is lined by choanocytes or collar cells.
 - 3) They have cellular level of organisation.
 - 4) Water transport or water canal system is present.

Select the correct option:

- (a) Echinodermata
- (b) Ctenophora
- (c) Porifera
- (d) Platyhelminthes

LRDAT/2024/3 Page 8 of 16

45. Haemoglobin is responsible for transport of oxygen in blood. It represents which level of
structure of protein arrangement?
(a) Primary structure
(b) Secondary structure
(c) Tertiary structure
(d) Quarternary structure.
46. Which of the following is incorrect with respect to significance of meiotic division?
(a) New recombination of genes.
(b) Number of chromosomes become half.
(c) Number of chromosomes remain same.
(d) Formation of spores and gametes.
47.On selfing a plant of genotype RrTt, 400 plants were raised. How many of them will be of genotype RrTt?(a) 50
(b) 100
(c) 200
(d) 300
48. Choose the chromosome in a human that possesses the least number of genes.
(a) 21st chromosome
(b) Autosome
(c) X- chromosome
(d) Y- chromosome
49. Darwin judged the fitness of individuals by:
(a) Ability to defend itself.
(b) Strategy to obtain food.
(c) Number of offsprings produced.
(d) Dominance over other individuals.
50. The diagnostic test that confirms typhoid in humans is:
(a) ELISA
(b) Widal
(c) MRI
(d) Amniocentesis
51. The organ in humans that undergo degeneration with increase in age and related to
immune system is:

LRDAT/2024/3 Page 9 of 16

(a) Spleen(b) Pancreas(c) Liver(d) Thymus

- 52. Regeneration of damaged growing grass following grazing is largely due to:
 - (a) Lateral meristem
 - (b) Intercalary meristem
 - (c) Apical meristem
 - (d) Secondary metabolites
- 53. Choose the wrong statements for the specialized connective tissue:
 - 1) All of the cartilages in vertebrate embryos are replaced by bones in adults.
 - 2) Cartilage is present in the tip of nose, outer ear joints, between adjacent bones of the vertebral column, limbs and hands in adults.
 - 3) Osteocytes are bone cells and present in the spaces called lacunae.
 - 4) Bone marrow is present in all bones and it is a site of production of blood cells.
 - 5) Blood is a fluid connective tissue.
 - (a) 1,2 and 5
 - (b) 1,3 and 5
 - (c) 1 and 4
 - (d) 4 and 5

For question numbers 54,55 and 56, two statements are given – one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below.

- (a) Both A & R are true and R is the correct explanation of A.
- (b) Both A & R are true but R is NOT the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false and R is also false.
- 54. Assertion: As we go up the surface of the earth, we feel light weighed than on the surface of the earth.

Reason: The acceleration due to gravity decreases on going up above the surface of the earth.

55. Assertion: Sodium are obtained by the electrolysis of its molten chloride, i.e., NaCl.

Reason: Na is deposited at the anode and Cl2 is deposited at the cathode.

56. Assertion: Iodine is necessary for normal rete of hormone synthesis.

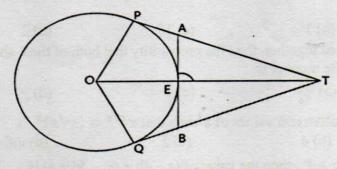
Reason: Deficiency of iodine cause diseases.

LRDAT/2024/3 Page 10 of 16

Read the following paragraph and answer the questions: (57 to 60)

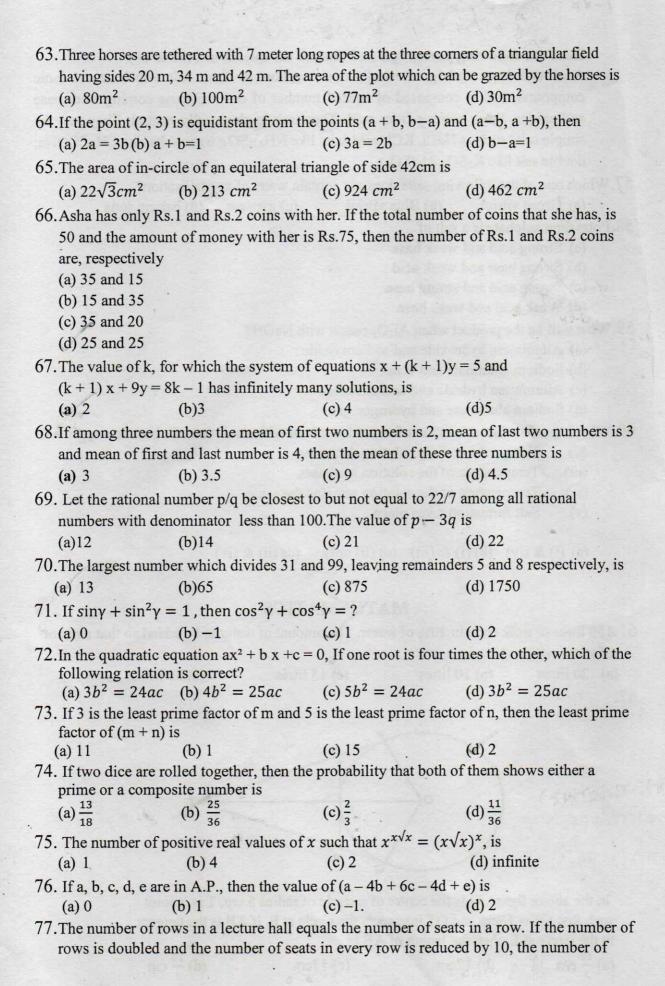
Acid and base undergo neutralisation reaction to form salt which is an ionic compound. Salt is composed of related number of cations, those coming from base and anions, those coming from acid. Thus, salt is electrically neutral. They may be simple salts such as NaCl, KCl; acid salts like NH₄)₂SO₄; basic salts like CH₃COONa; double salt like K2SO4.Al2(SO4)3.

- 57. Which one of the following salts does not contain water of crystallisation?
 - (a) Green vitriol
- (b) Blue vitriol
- (c) gypsum
- (d) baking soda


- 58. Potassium sulphate is a salt of
 - (a) Strong acid and weak base
 - (b) Strong base and weak acid
 - (c) Strong acid and strong base
 - (d) Weak acid and weak base
- 59. What will be the product when Al₂O₃ reacts with NaOH?
 - (a) Aluminium hydroxide and sodium oxide
 - (b) Sodium aluminate and water
 - (c) Aluminium hydride and sodium oxide
 - (d) Sodium aluminate and hydrogen gas
- 60. What happens when a solution of an acid is mixed with a solution of a base in a test tube?
 - Temperature of the solution decreases (ii)
 - Temperature of the solution increases (iii)
 - Temperature of the solution remains the same (iv)
 - Salt formation takes place (v)
 - (a) (i) & (iv) (b) (i) & (iii) (c) (ii) only

- (d) (ii) & (iv)

MATHEMATICS


- 61.150 litres of milk contain 20% of water. The amount of water to be added so that amount of water will be 25%, is
 - (a) 20 litres
- (b) 10 litres
- (c) 15 litres
- (d) 30 litres

62.

In the above figure, O is the centre of a circle of radius 5 cm, T is a point such that OT = 13cm and OT intersects the circle at E, if AB is the tangent to the circle at E, then the length of AB is

- (a) $\frac{10}{3}$ cm
- (b) 12cm
- (c) 17cm
- $(d)^{\frac{20}{3}}$ cm

LRDAT/2024/3 Page 12 of 16

seats is increased by 300. If x denotes the number of rows in the lecture hall, then the values of x is (d) 30 (a)10 (b) 15 78. If (0,0), (a,1) and (10,5) are colinear then the value of 'a' is (d) - 2(b) -1(c) 2 (a) 1 79. If α and β are the roots of the equation $x^2 - 2x + 4 = 0$, then the value of $(\alpha^3 + \beta^3)$ is (d) - 8(b) - 16(c) 8 80. A vessel is in the form of an inverted cone. Its height is 8 cm and radius of its top, which is open, is 5cm. It is filled with water up to the brim. When lead shots, each of which is a sphere of radius 0.5cm are dropped into the vessel, one fourth of the water flows out. Then the number of lead shots dropped in the vessel are (c)200(d)100(a) 500 (b) 300 81. The value of $sin^25^\circ + sin^210^\circ + sin^215^\circ + \cdots + sin^290^\circ$ is equal to: (c) 9.5 (b) 8.5 82. In a \triangle ABC, the internal bisectors of \angle B and \angle C meet at P and the external bisectors of \angle B and $\angle C$ meet at Q. Then $\angle BPC + \angle BQC = ?$ (b) 45° (c) 90° (d) 180° 83. If the difference of mode and median of a data is 24, then the difference of median and mean is (b) 24 (c) 8 (a) 12 84. If r and s are roots of $x^2 + px + q = 0$, then what is the value of $\frac{1}{r^2} + \frac{1}{s^2}$? (a) $p^2 - 4q$ (b) $\frac{p^2 - 4q}{2}$ (c) $\frac{p^2 - 4q}{q^2}$ (d) $\frac{p^2 - 2q}{q^2}$ 85. The sum of n terms of two A. P are in the ratio (5n+4):(9n+6), then the ratio of their 18th terms is (a) $\frac{47}{84}$ $(c)\frac{89}{150}$ 86. The maximum volume of a cone that can be carved out of a solid hemisphere of radius r (c) $\frac{\pi r^2}{3}$ (d) $3\pi r^3$ (b) $\frac{\pi r^3}{2}$ (a) $3\pi r^2$ 87. The sum of the length, breadth and height of a cuboid is $6\sqrt{3}$ cm and the length of its diagonal is $2\sqrt{3}$ cm. The total surface area of the cuboid is (c) 96cm² (a) $48cm^2$ (b) $72cm^2$ (d) $108cm^2$ 88. If 1/(b+c), 1/(c+a), 1/(a+b) are in AP then (a) a, b, c are in AP (b) a2, b2, c2 are in AP (c) 1/1, 1/b, 1/c are in AP

LRDAT/2024/3 Page 13 of 16

(d) None of these

89. If a cone is cut into two parts by a horizontal plane passing through the mid-point of its axis, then the volume of the upper part and the cone is

(a) 1:8

(b)1:5

(c)1:7

(d)1:6

90. If 35 is removed from the data: 30, 34, 35, 36, 37, 38, 39, 40, then the median increases by

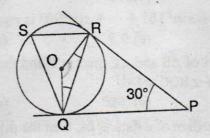
(a) 2

(b)1.5

(c)1

(d) 0.5

91. Two numbers 'a' and 'b' are selected successively without replacement in that order from the integers 1 to 10. The probability that $\frac{a}{b}$ is an integer, is


(a) $\frac{17}{45}$

(b) $\frac{1}{5}$

(c) $\frac{17}{90}$

 $(d)\frac{8}{45}$

92. In the following figure, O is the centre of the circle. The value of the angle ∠RSQ is

(a) 60°

(b) 75°

(c) 150°

(d) 45

Question no 93, 94, 95 and 96 are assertion-reason based questions in which a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true and R is not the correct explanation of A
- (c) A is true but R is false.
- (d) A is false but R is true.

93. Assertion (A): Both HCF and LCM of two natural numbers **a** & **b** can be 25 and 815 respectively.

Reason(R): LCM of two natural numbers is always divisible by their HCF.

94. Assertion (A): If three vertices of a parallelogram taken in order are (-1, -6), (2, -5) and (7, 2), then its fourth vertex is (4,1). Reason(R): Diagonals of a parallelogram bisect each other.

95. Assertion (A): If the total surface area and volume of a cube are numerically equal to 216, then the length of its edge is 6cm.

Reason(R): Volume and total surface area of a cube are always equal.

96. Assertion(A): D and E are points on the sides AB and AC respectively of a \triangle ABC such that AD = (7x - 4)cm, AE=(5x - 2)cm, DB = (3x + 4)cm and EC=3x cm. If DE || BC, then the value of x is 5cm.

Reason(R): If a line divides any two sides of a triangle in the same ratio then it is parallel to the third side.

Read the following paragraph and answer the questions: (97 to 100)

A group of students of class X visited India Gate on an education trip. The teacher and students had interest in history as well. The teacher narrated that India Gate, official name Delhi Memorial, originally called All-India War Memorial, monumental sandstone arch in New Delhi, dedicated to the troops of British India who died in wars fought between 1914 and 1919. The teacher also said that India Gate, which is located at the eastern end of the Rajpath (formerly called the Kingsway), is about 138 feet (42 metres) in height.

97.	The angle of	elevation if	they ar	e standing	at a distar	nce of 42m	away	from	the
	monument is								

(a) 30°	(b) 45°	(c) 60°	•	(d) 0
(a) 30°	(0) 45	(c) 60	1	(a)

98. They want to see the tower at an angle of 60°. So, they want to know the distance where they should stand and hence find the distance.

(Use $\sqrt{3} = 1.732$)

- (a) 25.24 m(approx.)
- (b) 20.12 m(approx.)
- (c) 42 m(approx.)
- (d) 24.25m(approx.)
- 99. If the altitude of the Sun is at 60°, then the height of the vertical tower that will cast a shadow of length 20 m is

(a) $20\sqrt{3}$ m (b) $20/\sqrt{3}$ m (c) $15/\sqrt{3}$ m

100. The ratio of the length its shadow and the tower is $1:\sqrt{3}$. The angle of elevation of the Sun is

(a) 30° (b) 45° (c) 60° (d) 90°

(d) 15√3 m

Space for Rough Work

LRDAT/2024/3 Page 16 of 16

and the relation of the broad and the research and the research and set the service of the second

to got history solves in the same of the state that the beauty to shift to say it.

and terms? The section is

APTITUDE TEST FOR ADMISSION INTO CLASS XI SCIENCE (2025-26)

ROLL NO.	
Time: 3 Hours	SET (B)
(9.00 am – 12.00 noon)	

Guidelines to the Candidates:

- ➤ This Booklet contains printed 15 pages and 1 blank page for rough work.

 Any defect found should be brought to the notice of the invigilator immediately.
- Fill in the particulars in the OMR Sheet given to you separately as per the directions given therein.
- > This test is of three hours duration.
- ➤ The question paper consists of 100 multiple choice questions comprising of Mathematics (40), General Science (40) and Aptitude (20) carrying maximum of 400 marks.
- ➤ There are four choices in every question as (A), (B), (C) and (D). Only one is correct. Each question carries 4 marks.
- > -1 will be awarded for each wrong answer/multiple answer.
- No mark will be awarded for any overwriting/scratching answer.
- ➤ No candidate shall leave his/her seat during examination.
- Do not tear/remove any page of the Booklet.
- ➤ Calculation, if any, may be done at the blank page of this booklet provided at the end for rough work. No calculator is allowed.
- After finishing the test, the booklet with the OMR sheet is to be handed over to the invigilator before leaving the room.

LRDAT/2025/2 Page 1 of 16

MATHEMATICS

1. A piece of wire 20 cm long is bent into the form of an arc of a circle subtending an angle of 60° at its centre. The radius of the circle is

(B) $\frac{30}{\pi}$ (C) $\frac{20}{\pi}$

The area of the largest triangle that can be inscribed in a semi-circle of 2. radius 'r' units is

(A) $\sqrt{2}r^2$ sq. units

(B) $\frac{1}{2}r^2$ sq. units

(C) $2r^2$ sq. units

(D) r^2 sq. units

3. If volumes of two spheres are in the ratio 64: 27, then the ratio of their surface areas is

(A) 3:4

(B)4:3

(C) 16:9

(D) 9:16

4. If the mean of first 'n' natural numbers is $\frac{5n}{9}$, then the value of 'n' is

(A)5

(B)4

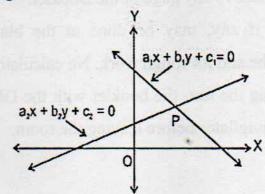
(C)9

(D) none of these

5. If the difference of mode and median of a data is 24, then the difference of median and mean is

(A) 8

(B) 12

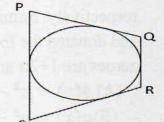

(C) 24

(D) 36

6. In a single throw of a pair of dice, the probability of getting 'the sum a perfect square' is

(B) $\frac{7}{36}$

7. If the given figure shows a pair of linear equations in two variables, then which of the following statements is true?


(A)
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

(B)
$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

(C)
$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

(D)
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

8. A quadrilateral PQRS is drawn to circumscribe a circle. If PQ = 12 cm, PS = 15 cm and RS = 14 cm, then the length of QR is

- (A) 15 cm
- (B) 14 cm
- (C) 12 cm
- (D) 11 cm
- 9. The circumference of a circle exceeds the diameter by 16.8 cm. The radius of the circle is
 - (A) 3.29cm
- (B) 3.79 cm
- (C) 3.92 cm
- (D) 3.73 cm
- 10. In a circle of radius 10.5 cm, the length of the minor arc is $\frac{1}{5}$ times the length of the major arc. Then the area of the sector corresponding to the major arc is
 - (A) 288.75 cm²
- (B) $45\pi \text{ cm}^2$
- $(C) 271.85 \text{ cm}^2$
- (D) 299.6 cm^2

- 11. The value of $\frac{\sin\theta 2\sin^3\theta}{2\cos^3\theta \cos\theta}$ is
 - $(A) \cot \theta$
- (B) $tan\theta$
- (C) secθ
- (D) cosecθ
- 12. The reminder when 1! + 2! + 3! + 4! +-----+100! is divided by 12 is
 - (A) 5

- (B) 7
- (C) 9
- (D)11
- 13.Let a+b+c=1, $ab+bc+ca=\frac{1}{3}$, a,b,c are real, then the value of

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a}$$
 is equal to

- (A)1 these
- (B) 2
- (C)3
- (D) none of
- 14.Gold is 19 times as heavy as water and cupper 9 times. The ratio should these metals be remixed so that the mixture may be 15 times as heavy as water, is
 - (A) 2:3
- (B) 1:2
- (C) 3:2
- (D) 2:1

 15.A farmer sold two cows at the price Rs2000 each, there by gained 30% in one and lost 30% in other. The net profit /loss is (A) 9% gain (B) 9% loss (C) no gain or loss (D) 6% loss 16. Due to corona in China many workers migrated to their country. Mr. Mehbooba Rehman from Jaipur decides to help them with food packets and clothes. The number of food packets and clothes denoted by them can be represented by the zeroes α and β of the polynomial p(x) = x² - x - 2 respectively. Ramiz who is a student of Rehman also got inspired by him and donated the food packets and clothes in the form of a polynomial whose zeroes are 1+2α and 1+2β is q(x), Then: (A) q(x) = x² - 4x + 5 (B)q(x) = x² - 4x - 5 					
(C) $q(x) = x^2 + 4x - 5$ (D) $q(x) = x^2 + x - 2$					
17. If $\sec^2\theta + \tan^2\theta = \frac{5}{3}$, then the value of $\tan 2\theta$ is					
(A) $2\sqrt{3}$	(B) $\sqrt{3}$	$(C)\frac{1}{\sqrt{3}}$	(D)		
Can't be dete		√3			
	Arithmetic progressio	n is 0. Which term i	s double of its		
19 th term?		receipt in the str			
(A) 20	(B) 38	(C)18	(D) 29		
19. If a, b, c are posit	ive real numbers such t	that $a + \frac{1}{b} = \frac{7}{3}, b + \frac{1}{3}$	$\frac{1}{c} = 4$, $c + \frac{1}{a} =$		
1, then value of ab					
(A) 0		(C) 1	(D) 2		
20. If $p(x)$ is a polynomial	omial satisfying $p(x + $	$(\frac{5}{2}) = p(x)$ for all rea	l values of x. If		
	the value of P(8) is:				
(A) 2005	(B) 2009	(C) 2011	(D) 2006		
21. If $\sin \alpha = \frac{3}{5}$ and $\cos \alpha$	os $\beta = \frac{3}{5}$, $0 < \alpha$, $\beta < \frac{\pi}{2}$ then	hen			
(A) $\alpha = \beta$	(B) $\alpha > \beta$ (C	C) $\alpha < \beta$ (D)	none of these		
	ls lie on the ground tou above the ground. If o l is:				
40	(B) 8 units	(C) 4 units	(D) $\frac{20}{3}$ units		
LRDAT/2025/2			Page 4 of 16		

23. The number of real solutions to equation $x^3 + (x + 1)^3 = (x + 3)^3 - (x + 1)^3 = (x + 3)^3 - (x + 1)^3 = ($ $(x + 2)^3$ is (A)0(B) 1 24. If m is any positive integer, then value of $\sqrt{m + \sqrt{m + \sqrt{m + \cdots}}}$ – $\left[\sqrt{m-\sqrt{m-\sqrt{m-\cdots}}}\right]$ is (D) can't be determined (B) 0 (C) -125. Two triangles are similar but not congruent and lengths of side of the first are 6cm, 11cm and 12cm. The sides of second are integral lengths and one of them is congruent to the side of first. The perimeter of second triangle is (A) 52(B) 29(C) 58(D) 56 26. Two circles of radii 20 cm and 37 cm intersect in A and B. If O₁ and O₂ are their centers and AB = 24 cm then the distance O_1O_2 is equal to (A) 44 cm (B) 51 cm (C) 40.5 cm(D) 45 cm 27. The last digit of the sum $(2002^{2005} + 2003^{2006} + 2007^{2007})$ is (A)5(D) 4 28. Sum of n terms of the series $\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} + \cdots$ is (A) $\frac{n(n+1)}{2}$ (B) 2n(n+1) (C) $\frac{n(n+1)}{\sqrt{2}}$ (D)1 29. The number of lines that can be drawn through 21 points on a circle is (A) 210(D) 7 30. The value of $\cos^2 5^\circ + \cos^2 10^\circ + \cos^2 15^\circ + \dots + \cos^2 90^\circ$ is: (B) $8\frac{1}{2}$ (C) 10 (D) $2\frac{1}{2}$ (A)0

Question no 31 TO 35 are assertion-reason based questions in which a statement of Assertion (A) is followed by a statement of Reason (R).

Choose the correct answer out of the following choices.

- (A) Both A and R are true and R is the correct explanation of A.
- (B) Both A and R are true and R is not the correct explanation of A
 - (C) A is true but R is false.
 - (D) A is false but R is true

- 31.Assertion (A): $x^2 + 4x + 5$ has two real zeroes. Reason(R): A quadratic polynomial can have at most two zeroes.
- 32. Assertion (A): Ratio in which the line 3x + 4y = 7 divides the line segment joining the points (1, 2) and (-2, 1) internally, is 3:5.

 Reason(R): The coordinate of the point P (x, y) which divides the line segment joining the points A (x_1, y_1) and B (x_2, y_2) in the ratio m:n internally is $\left(\frac{mx_2-nx_1}{m-n}, \frac{my_2-ny_1}{m-n}\right)$
- 33. Assertion(A): If the image of the point P under the reflection in the Y-axis is (-3, 2), then the coordinates of the point P is (3, 2)
 Reason(R): If the image of the point P(x, y) under the reflection in the Y-axis is (-x, y)
- 34.Assertion(A): The probability that a non-leap year selected at random will have 53 Sundays is $\frac{1}{7}$
 - Reason(R): Probability of an event is the ratio of number of favorable outcomes to the number of total outcomes
- 35. Assertion(A): D and E are points on the sides AB and AC respectively of a \triangle ABC such that DE || BC then the value of x is $\frac{91}{11}$, when AD=4cm AE=8 cm, DB=8 and EC= (3x-19) cm. Reason(R): If a line divides any two sides of a triangle in the same ratio then it is not parallel to the third side.

CASE-STUDY BASED QUESTIONS

Question No. 36 - 38 based on case-based question I and Question No. 39 - 40 based on case-based question - II.

CASE BASED QUESTION - I.

A group of class X students goes to picnic during vacation. There were three different slides and three friends are Ajay, Ram and Shyam are sliding on a slider whose positions are represented by the points P, Q and R respectively.

Based on the above information, answer the following question no. 36, no. 37, no. 38.

6 (2,5) 5 Q(x, y) (8, 3) 1 Q(x, y) (8, 3) 1 Q(x, y) (8, 3)

LRDAT/2025/2

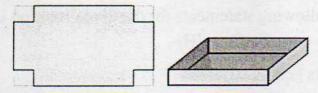
Page 6 of 16

36. The distance of Ajay from vertical axis is

- (A) 2 ·
- (B) 5

(C) $\sqrt{29}$

(D)3


37. If Ram is at exactly in the middle of Ajay and Shyam, then the coordinates of his position is

- (A) (4,5)
- (B)(3,1)
- (C)(5,3)
- (D)(5,4)

38. The coordinate of point on x-axis which is at equal distance from P and R is

- (A) $\left(0, \frac{11}{3}\right)$ (B) (11, 3)
- $(C)\left(\frac{11}{3},0\right) \qquad (D)\left(\frac{3}{11},0\right)$

CASED BASED QUESTION - II

From a rectangular piece of card board of length 34cm and 28cm, four equal square pieces of area 9cm² are cut off from each corner and then flapped to make an open cuboidal box.

Based on the above information answer the following question no. 39 and no. 40:

- 39. The total surface area of the open box will be
 - 916cm² (A)
- $(B)1848cm^2$
- (C) 1532cm^2
- (D) 496cm²

- 40. The volume of the open box will be
 - $(A)300cm^3$
- $(B)1848 cm^3$
- $(C)1532 cm^3$
- (D)496cm³

GENERAL SCIENCE

- 41. Which of the following does not form an acidic salt?
 - Phosphoric acid (A)
 - Carbonic acid (B)
 - Hydrochloric acid (C)
 - Sulphuric acid (D)

- 42.A compound X on electrolysis in aqueous solution will form compound Y which is a strong base along with two gases a and b. B is used in manufacture of bleaching powder. Identify X, Y, A and B.
 - (A) NaCl, NaOH, O₂, Cl₂
 - (B) NaCl, NaOH, H₂, Cl₂
 - (C) KNO₃, KCl, O₂, Cl₂
 - (D) KNO₃, KCl, H₂, Cl₂
- 43. Which of the following is treated with chlorine to form bleaching powder?
 - (A) CaSO₄
 - (B) $Ca(OH)_2$
 - (C) CaCO₃
 - (D) CaCl₂
- 44. Which of the following statements for the given reaction is correct?

$$3Fe + 4H_2O \longrightarrow Fe_3O_4 + 4H_2$$

- i) iron metal is getting oxidised
- ii) water getting reduced
- iii) water is acting as reducing agent
- iv) water is acting as an oxidising agent
- (A) i,ii and iii
- (B) i, ii and iv
- (C) iii and iv
- (D) ii and iv
- 45.On heating ferrous sulphate crystal one would get,
 - (A) No solid residue
 - (B) Clear solution
 - (C) Smell of burning sulphur
 - (D) both a and c
- 46. Which of the following S block elements does not react with water?
 - (A) K
 - (B) Na
- . (C) Ca
 - (D) Be

	ch one of the following metals do not react with hot water as well as water?
(A)	Na
(B)	Ca VI Differential Laborator House and Administration
(C)	Mg
(D)	Fe
	$-HNO_3$ > $Cu(NO_3)_3 + H_2$
H2+	HNO_3 ———> $H_2O + NO_2$
What c	an be inferred from the chemical equation?
(A)	Copper causes the oxidation of HNO ₃ to form NO ₂
(B)	Hydrogen gas gets oxidised by HNO ₃ to form water.
(C)	Hydrogen gas reacts with oxygen in the air to form water.
(D)	Nitrate reacts with hydrogen to form NO ₂ and H ₂ O.
49. An e	lement reacts with oxygen to form an oxide. The oxide formed terms
the re	ed litmus into blue. What is the nature of the element?
(A)	Metal
(B)	Non metal
(C)	Both a and b
(D)	None of these
50.The r	netallic lustre exhibited by sodium is explained by:
(A)	diffusion of sodium ions
(B)	oscillation of loose electrons
(C)	excitation of free protons
(D)	existence of body centered cubic lattice
51.Addi	tion reactions are undergone by,
(A)	Saturated hydrocarbon
(B)	Unsaturated hydrocarbon
(C)	Only alkene
(D)	Only alkyne
52. The	difference in formula and molecular masses between methanol and
ethan	ol is,
(A)	CH ₃ and 16u
(B)	CH ₄ and 18u
(C)	CH ₂ and 14u
(D)	C ₂ H ₄ and 28u
LRDAT/20	25/2 Page 9 of

	es. Arrange the following cells in an alloose the correct option among the
I. Mycoplasma. II. Ostrich eg	ggs. III. Human RBC. IV. Bacteria
(A) I, IV, III, II.	(B) I ,II, III, IV
(C) II, I, III, IV.	(D) III, II, I, IV
54.Sweetest sugar is:	
(A) Fructose. (B) Glucose. (C	C) Lactose. (D) Mannose
many polypeptide chains are the (A) 2 alpha and 2 beta. (B) 4 alpha. (C) 4 beta.	carry oxygen as oxyhaemoglobin. Howere in one haemoglobin molecule?
56.A phyllum common to both unio	
(A) Monera. (B) Protista. 57. Agar, carrageen are the phycoco	(C) Fungi. (D) Plantae.
(A) Blue green algae.	, while a man and a man an
(B) Red algae.	sext bound * -(8)
(C) Green algae.	
(D) Brown algae.	
	tosynthesis is common in all except:
(A) Nostoc (B) Chara. (C)	Euglena. (D) Green sulphur bacteria. into two equal vertical halves by more than
(C) Heteromorphic.	(D) Heterocyclic
	ation of the age of plant by counting the
annual rings is called:	ation of the age of plant by counting the
(A) Botanochronology.	(B) Bio chronology
(C) Cryptogamochronology.	(D) Dendrochronology
LRDAT/2025/2	Page 10 of 16

61. Select the characteristics common followings:	to both humans and adult frogs from the		
(A) Four chambered heart.	(B) Internal fertilization		
(C) Nucleated RBCs.	(D) Ureotelic mode of excretion		
62. A car accelerated from initial post then	sition and then returned at initial point,		
(A) Velocity is zero but speed	increases		
(B) Speed is zero but velocity	increases		
(C) Both speed and velocity in	crease		
(D) Both speed and velocity de	ecrease		
	km/hr, can be stopped by brakes after at g at a speed of 100 km/hr, the minimum (C) 18m (D) 24m		
64.A body freely falling from the res	t has a velocity 'v' after it falls through a fall down for its velocity to become (C) 6h (D) 8h		
65. Where will it be profitable to purc	chase 1 kg sugar (by spring balance)		
(A) At poles (B)	At equator		
(C) At 45° latitude (D)	At 40°latitude		
66. Which of the following has the m (A) A 100 kg vehicle moving at (B) A 4 g weight moving at 100 (C) A 200 g weight moving wit (D) A 20 g weight after falling 67. Convex mirror of focal length 10	10.02 m s^{-1} 1000 cm s^{-1} h kinetic energy 10^{-6} J		
index of water is 4/3. What will b (A) 10 cm (B) 40/3 cm 68. Velocity of light in glass whose re	e the focal length of the mirror in water (C) 30/4 cm (D) None of these effective index with respect to air is 1.5 is the velocity of light found to be 2.50 of the liquid with respect to air is		

LRDAT/2025/2 Page 11 of 16

69.A person suffering from 'presbyopia' should use (A) A concave lens (B) A convex lens (C) A bifocal lens whose lower portion is convex (D) A bifocal lens whose upper portion is convex 70. A box of mass 1 kg is pulled on a horizontal plane of length 1 m by a force of 8 N then it is raised vertically to a height of 2m, the net work done is (C) 18J(D) None of above (B) 8 J (A) 28 J71. Two masses of 1g and 9g are moving with equal kinetic energies. The ratio of the magnitudes of their respective linear momenta is (A) 1:9 (B) 9:1 (C) 1:3(D) 3:172. An aluminium rod of length 3.14 m is of square cross-section 3.14 × 3.14 mm². What should be the radius of 1 m long another rod of same material to have equal resistance? (C) 1 mm (D) 6 mm (A) 2 mm (B) 4 mm 73. A vertical wire carrying a current in the upward direction is placed in a horizontal magnetic field directed towards north. The wire will experience a force directed towards (C) East (D) West (B) South (A) North Ouestion no 74 TO 76 are Assertion-Reason based questions in which a

statement of Assertion (A) is followed by a statement of Reason (R).

Choose the correct answer out of the following choices.

- (A) Both A and R are true and R is the correct explanation of A.
- (B) Both A and R are true and R is not the correct explanation of A
- (C) A is true but R is false.
- (D) A is false but R is true
- 74. Assertion (A): The connecting wires are made of copper.

Reason (R): Copper has very high electrical conductivity.

75. Assertion (A): Simple goitre is associated with inadequate dietary intake. Reason (R): TSH level in a goitre patient is high.

76. Assertion (A): carbon forms large number of compounds.

Reason (R): Carbon has small size and it is tetravalent.

CASE BASED QUESTIONS:

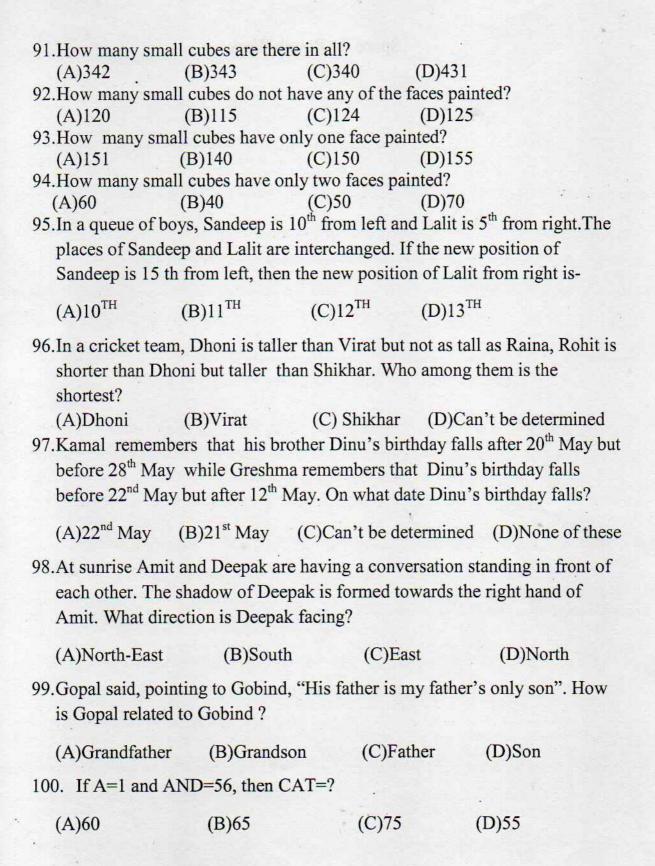
Gregor Johan Mendel conducted breeding experiments on garden pea plant. He selected this plant because of some special qualities. He observed seven pairs of contrasting characters in pea plant. He conducted

Page 12 of 16 LRDAT/2025/2

his breeding experiment in three steps, namely, selection of parents, production of first generation by hybridization, and raising the second and subsequent generations by self-pollination of hybrids.

Based on the understanding of the above paragraph answer the following questions:

- 77. According to Mendel which one is the unit of heredity?
 - (A) Gene. (B) Factor. (C) Chromosome. (D)All of these.
- 78. Identify the genotype of the parents selected by Mendel for hybridization.
 - (A) Homozygous.
 - (B) Heterozygous.
 - (C) Either homozygous or heterozygous.
 - (D) Cannot be predicted.
- 79. In Mendel's hybridization experiment the phenotype of the first generation resembles one parent. It can be explained by:
 - (A) Law of paired factors
 - (B) Law of dominance
 - (C)Law of segregation
 - (D)Law of independent assortment.
- 80. The phenotypic ratio of second generation in dihybrid cross is:
 - (A) 3: 1.
- (B) 9: 3: 3: 1. (C) 12: 3: 3: 1.
- (D) 1: 3


APTITUDE

- 81.I was facing west. I turned 45 degree in the anti-clockwise direction, then 180 degree in the clockwise direction. Finally, I turned 90 degree in the anti-clockwise direction. Which direction am I facing now?
 - (A) South West
- (B)South
- (C)North
- (D)North West
- 82. In a coding pattern the word" LOT" is written as 111314161921, then the word "SIP" can be written as 18208101517, Then how will "GO" be written in that language?
 - (A) 681416
- (B) 561495
- (C) 450384
- (D)571594
- 83. Select one of the following four option that will make the second pair analogous to the first pair given as:

BIOLOGY: ZHPMPJC:: CHEMISTRY: -----

(A) ZSUJTFNID (B) ZUSJTNDIF (C)ZSUTJNFID (D) ZUSTNFJID. LRDAT/2025/2 Page 13 of 16

	e option the 2 nd num Which is the odd on		o the 1 st number in a similar	
(A)99-9801	(B)91-8281	(C)81-6561	(D) 69-4231	
	d minute hand will		which of these cases, the n each other when this time	
(A)6:00	(B)2:30	(C)4:30	(D)7:30 .	
by two conclusion seem to be at vari	ns. you have to take	the two statem ly known facts	ents to be true even if they and decide which of the ments.	
Complete Complete Section Sect	conclusion I follow			
	conclusion II follow			
	r conclusion I OR I			
The second secon	conclusion I and II		nation by wild (8):	
	No dogs are cats	ionows.		
	All cats are pigs.			
	I) some cats are do	ac		
Conclusions.	II) some pigs are no			
87.Statements:	some players are	The second secon		
67.Statements.	some singers are t			
Conclusions				
Conclusions	: I) some players ar			
00 Ctatamanta	II) No players are All stones are water			
88.Statements:	Some water are cle			
Canalugiang				
Conclusions: I) some water are stones. II) all clean are water.				
	ii) all clean are w	ater.		
90 If 24 is relate	d to 12,in the same	way 50 is relat	ed to	
(A) 38	(B) 45		(D) 14	
			med with the letter ESRO	
	tter once in each wo		med with the letter LSRO	
(A)None	(B) One	(C) Two	(D) Three	
Directions (Q	AND THE RESERVE OF THE PARTY OF	(C) 1 WO	(D) Timee	
		lor Then it is	cut into some small cubes in	
			th of the length of big cube.	
now allswer	the following quest	ions.		
LRDAT/2025/2			Page 14 of 16	

LRDAT/2025/2 Page 15 of 16

Space for Rough Work

LRDAT/2025/2 Page **16** of **16**

mentantili Sacrit Zistilineni (A)